Seung-Goo Kim
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Seung-Goo Kim.
PLOS ONE | 2011
Seung-Goo Kim; June Sic Kim; Chun Kee Chung
Background Recent electrophysiological and neuroimaging studies have explored how and where musical syntax in Western music is processed in the human brain. An inappropriate chord progression elicits an event-related potential (ERP) component called an early right anterior negativity (ERAN) or simply an early anterior negativity (EAN) in an early stage of processing the musical syntax. Though the possible underlying mechanism of the EAN is assumed to be probabilistic learning, the effect of the probability of chord progressions on the EAN response has not been previously explored explicitly. Methodology/Principal Findings In the present study, the empirical conditional probabilities in a Western music corpus were employed as an approximation of the frequencies in previous exposure of participants. Three types of chord progression were presented to musicians and non-musicians in order to examine the correlation between the probability of chord progression and the neuromagnetic response using magnetoencephalography (MEG). Chord progressions were found to elicit early responses in a negatively correlating fashion with the conditional probability. Observed EANm (as a magnetic counterpart of the EAN component) responses were consistent with the previously reported EAN responses in terms of latency and location. The effect of conditional probability interacted with the effect of musical training. In addition, the neural response also correlated with the behavioral measures in the non-musicians. Conclusions/Significance Our study is the first to reveal the correlation between the probability of chord progression and the corresponding neuromagnetic response. The current results suggest that the physiological response is a reflection of the probabilistic representations of the musical syntax. Moreover, the results indicate that the probabilistic representation is related to the musical training as well as the sensitivity of an individual.
NeuroImage | 2016
Roberta Bianco; Giacomo Novembre; Peter E. Keller; Seung-Goo Kim; Florian Scharf; Angela D. Friederici; Arno Villringer; Daniela Sammler
The ability to predict upcoming structured events based on long-term knowledge and contextual priors is a fundamental principle of human cognition. Tonal music triggers predictive processes based on structural properties of harmony, i.e., regularities defining the arrangement of chords into well-formed musical sequences. While the neural architecture of structure-based predictions during music perception is well described, little is known about the neural networks for analogous predictions in musical actions and how they relate to auditory perception. To fill this gap, expert pianists were presented with harmonically congruent or incongruent chord progressions, either as musical actions (photos of a hand playing chords) that they were required to watch and imitate without sound, or in an auditory format that they listened to without playing. By combining task-based functional magnetic resonance imaging (fMRI) with functional connectivity at rest, we identified distinct sub-regions in right inferior frontal gyrus (rIFG) interconnected with parietal and temporal areas for processing action and audio sequences, respectively. We argue that the differential contribution of parietal and temporal areas is tied to motoric and auditory long-term representations of harmonic regularities that dynamically interact with computations in rIFG. Parsing of the structural dependencies in rIFG is co-determined by both stimulus- or task-demands. In line with contemporary models of prefrontal cortex organization and dual stream models of visual-spatial and auditory processing, we show that the processing of musical harmony is a network capacity with dissociated dorsal and ventral motor and auditory circuits, which both provide the infrastructure for predictive mechanisms optimising action and perception performance.
Frontiers in Human Neuroscience | 2013
Seung-Goo Kim; Wi Hoon Jung; Sung Nyun Kim; Joon Hwan Jang; Jun Soo Kwon
As one of the most widely accepted neuroanatomical models on obsessive-compulsive disorder (OCD), it has been hypothesized that imbalance between an excitatory direct (ventral) pathway and an inhibitory indirect (dorsal) pathway in cortico-striato-thalamic circuit underlies the emergence of OCD. Here we examine the structural network in drug-free patients with OCD in terms of graph theoretical measures for the first time. We used a measure called efficiency which quantifies how a node transfers information efficiently. To construct brain networks, cortical thickness was automatically estimated using T1-weighted magnetic resonance imaging. We found that the network of the OCD patients was as efficient as that of healthy controls so that the both networks were in the small-world regime. More importantly, however, disparity between the dorsal and the ventral networks in the OCD patients was found in terms of graph theoretical measures, suggesting a positive evidence to the imbalance theory on the underlying pathophysiology of OCD.
PLOS ONE | 2015
Seung-Goo Kim; Wi Hoon Jung; Sung Nyun Kim; Joon Hwan Jang; Jun Soo Kwon
Many of previous neuroimaging studies on neuronal structures in patients with obsessive-compulsive disorder (OCD) used univariate statistical tests on unimodal imaging measurements. Although the univariate methods revealed important aberrance of local morphometry in OCD patients, the covariance structure of the anatomical alterations remains unclear. Motivated by recent developments of multivariate techniques in the neuroimaging field, we applied a fusion method called “mCCA+jICA” on multimodal structural data of T1-weighted magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) of 30 unmedicated patients with OCD and 34 healthy controls. Amongst six highly correlated multimodal networks (p < 0.0001), we found significant alterations of the interrelated gray and white matter networks over occipital and parietal cortices, frontal interhemispheric connections and cerebella (False Discovery Rate q ≤ 0.05). In addition, we found white matter networks around basal ganglia that correlated with a subdimension of OC symptoms, namely ‘harm/checking’ (q ≤ 0.05). The present study not only agrees with the previous unimodal findings of OCD, but also quantifies the association of the altered networks across imaging modalities.
2012 IEEE Workshop on Mathematical Methods in Biomedical Image Analysis | 2012
Seung-Goo Kim; Moo K. Chung; Stacey M. Schaefer; Carien M. van Reekum; Richard J. Davidson
We present a new sparse shape modeling framework on the Laplace-Beltrami (LB) eigenfunctions. Traditionally, the LB-eigenfunctions are used as a basis for intrinsically representing surface shapes by forming a Fourier series expansion. To reduce high frequency noise, only the first few terms are used in the expansion and higher frequency terms are simply thrown away. However, some lower frequency terms may not necessarily contribute significantly in reconstructing the surfaces. Motivated by this idea, we propose to filter out only the significant eigenfunctions by imposing l1-penalty. The new sparse framework can further avoid additional surface-based smoothing often used in the field. The proposed approach is applied in investigating the influence of age (38-79 years) and gender on amygdala and hippocampus shapes in the normal population. In addition, we show how the emotional response is related to the anatomy of the subcortical structures.
pacific-rim symposium on image and video technology | 2011
Seung-Goo Kim; Moo K. Chung; Seongho Seo; Stacey M. Schaefer; Carien M. van Reekum; Richard J. Davidson
We present a new subcortical structure shape modeling framework using heat kernel smoothing constructed with the Laplace-Beltrami eigenfunctions. The cotan discretization is used to numerically obtain the eigenfunctions of the Laplace-Beltrami operator along the surface of subcortical structures of the brain. The eigenfunctions are then used to construct the heat kernel and used in smoothing out measurements noise along the surface. The proposed framework is applied in investigating the influence of age (38-79 years) and gender on amygdala and hippocampus shape. We detected a significant age effect on hippocampus in accordance with the previous studies. In addition, we also detected a significant gender effect on amygdala. Since we did not find any such differences in the traditional volumetric methods, our results demonstrate the benefit of the current framework over traditional volumetric methods.
Human Brain Mapping | 2016
Seung-Goo Kim; Thomas R. Knösche
Absolute pitch (AP) is known as the ability to recognize and label the pitch chroma of a given tone without external reference. Known brain structures and functions related to AP are mainly of macroscopic aspects. To shed light on the underlying neural mechanism of AP, we investigated the intracortical myeloarchitecture in musicians with and without AP using the quantitative mapping of the longitudinal relaxation rates with ultra‐high‐field magnetic resonance imaging at 7 T. We found greater intracortical myelination for AP musicians in the anterior region of the supratemporal plane, particularly the medial region of the right planum polare (PP). In the same region of the right PP, we also found a positive correlation with a behavioral index of AP performance. In addition, we found a positive correlation with a frequency discrimination threshold in the anterolateral Heschls gyrus in the right hemisphere, demonstrating distinctive neural processes of absolute recognition and relative discrimination of pitch. Regarding possible effects of local myelination in the cortex and the known importance of the anterior superior temporal gyrus/sulcus for the identification of auditory objects, we argue that pitch chroma may be processed as an identifiable object property in AP musicians. Hum Brain Mapp 37:3486–3501, 2016.
international symposium on biomedical imaging | 2011
Seung-Goo Kim; Moo K. Chung; Jamie L. Hanson; Brian B. Avants; James C. Gee; Richard J. Davidson; Seth D. Pollak
The tensor-based morphometry (TBM) has been widely used in characterizing tissue volume difference between populations at voxel level. We present a novel computational framework for investigating the white matter connectivity using TBM. Unlike other diffusion tensor imaging (DTI) based white matter connectivity studies, we do not use DTI but only T1-weighted magnetic resonance imaging (MRI). To construct brain network graphs, we have developed a new data-driven approach called the e-neighbor method that does not need any predetermined parcellation. The proposed pipeline is applied in detecting the topological alteration of the white matter connectivity in maltreated children.
Scientific Reports | 2017
Youngwoo Bryan Yoon; Won-Gyo Shin; Tae Young Lee; Ji-Won Hur; Kang Ik K. Cho; William Seunghyun Sohn; Seung-Goo Kim; Kwang-Hyuk Lee; Jun Soo Kwon
Increasing evidence indicates that multiple structures in the brain are associated with intelligence and cognitive function at the network level. The association between the grey matter (GM) structural network and intelligence and cognition is not well understood. We applied a multivariate approach to identify the pattern of GM and link the structural network to intelligence and cognitive functions. Structural magnetic resonance imaging was acquired from 92 healthy individuals. Source-based morphometry analysis was applied to the imaging data to extract GM structural covariance. We assessed the intelligence, verbal fluency, processing speed, and executive functioning of the participants and further investigated the correlations of the GM structural networks with intelligence and cognitive functions. Six GM structural networks were identified. The cerebello-parietal component and the frontal component were significantly associated with intelligence. The parietal and frontal regions were each distinctively associated with intelligence by maintaining structural networks with the cerebellum and the temporal region, respectively. The cerebellar component was associated with visuomotor ability. Our results support the parieto-frontal integration theory of intelligence by demonstrating how each core region for intelligence works in concert with other regions. In addition, we revealed how the cerebellum is associated with intelligence and cognitive functions.
Human Brain Mapping | 2017
Seung-Goo Kim; Thomas R. Knösche
Absolute pitch (AP) is the ability to recognize pitch chroma of tonal sound without external references, providing a unique model of the human auditory system (Zatorre: Nat Neurosci 6 ( ) 692–695). In a previous study (Kim and Knösche: Hum Brain Mapp ( ) 3486–3501), we identified enhanced intracortical myelination in the right planum polare (PP) in musicians with AP, which could be a potential site for perceptional processing of pitch chroma information. We speculated that this area, which initiates the ventral auditory pathway, might be crucially involved in the perceptual stage of the AP process in the context of the “dual pathway hypothesis” that suggests the role of the ventral pathway in processing nonspatial information related to the identity of an auditory object (Rauschecker: Eur J Neurosci 41 ( ) 579–585). To test our conjecture on the ventral pathway, we investigated resting state functional connectivity (RSFC) using functional magnetic resonance imaging (fMRI) from musicians with varying degrees of AP. Should our hypothesis be correct, RSFC via the ventral pathway is expected to be stronger in musicians with AP, whereas such group effect is not predicted in the RSFC via the dorsal pathway. In the current data, we found greater RSFC between the right PP and bilateral anteroventral auditory cortices in musicians with AP. In contrast, we did not find any group difference in the RSFC of the planum temporale (PT) between musicians with and without AP. We believe that these findings support our conjecture on the critical role of the ventral pathway in AP recognition. Hum Brain Mapp 38:3899–3916, 2017.