Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Seung-Jae Han is active.

Publication


Featured researches published by Seung-Jae Han.


international conference on computer communications | 2003

Integration of 802.11 and third-generation wireless data networks

Milind M. Buddhikot; Girish P. Chandranmenon; Seung-Jae Han; Yui-Wah Lee; Scott C. Miller; Luca Salgarelli

The third-generation (3G) wide area wireless networks and 802.11 local area wireless networks possess complementary characteristics. 3G networks promise to offer always-on, ubiquitous connectivity with relatively low data rates. 802.11 offers much higher data rates, comparable to wired networks, but can cover only smaller areas, suitable for hot-spot applications in hotels and airports. The performance and flexibility of wireless data services would be dramatically improved if users could seamlessly roam across the two networks. In this paper, we address the problem of integration of these two classes of networks to offer such seamless connectivity. Specifically, we describe two possible integration approaches - namely tight integration and loose integration and advocate the latter as the preferred approach. Our realization of the loose integration approach consists of two components: a new network element called IOTA gateway deployed in 802.11 networks, and a new client software. The IOTA gateway is composed of several software modules, and with cooperation from the client software offers integrated 802.11/3G wireless data services that support seamless intertechnology mobility, Quality of Service (QoS) guarantees and multiprovider roaming agreements. We describe the design and implementation of the IOTA gateway and the client software in detail and present experimental performance results that validate our architectural approach.


IEEE ACM Transactions on Networking | 2007

Fairness and load balancing in wireless LANs using association control

Yigal Bejerano; Seung-Jae Han; Li Li

The traffic load of wireless LANs is often unevenly distributed among the access points (APs), which results in unfair bandwidth allocation among users. We argue that the load imbalance and consequent unfair bandwidth allocation can be greatly reduced by intelligent association control. In this paper, we present an efficient solution to determine the user-AP associations for max-min fair bandwidth allocation. We show the strong correlation between fairness and load balancing, which enables us to use load balancing techniques for obtaining optimal max-min fair bandwidth allocation. As this problem is NP-hard, we devise algorithms that achieve constant-factor approximation. In our algorithms, we first compute a fractional association solution, in which users can be associated with multiple APs simultaneously. This solution guarantees the fairest bandwidth allocation in terms of max-min fairness. Then, by utilizing a rounding method, we obtain the integral solution from the fractional solution. We also consider time fairness and present a polynomial-time algorithm for optimal integral solution. We further extend our schemes for the on-line case where users may join and leave dynamically. Our simulations demonstrate that the proposed algorithms achieve close to optimal load balancing (i.e., max-min fairness) and they outperform commonly used heuristics.


IEEE Communications Magazine | 2003

Design and implementation of a WLAN/cdma2000 interworking architecture

Milind M. Buddhikot; Girish P. Chandranmenon; Seung-Jae Han; Yui-Wah Lee; Scott C. Miller; Luca Salgarelli

The combination of 3G and WLAN wireless technologies offers the possibility of achieving anywhere, anytime Internet access, bringing benefits to both end users and service providers. We discuss interworking architectures for providing integrated service capability across widely deployed 3G cdma2000-based and IEEE 802.11-based networks. Specifically, we present two design choices for integration: tightly coupled and loosely coupled, and recommend the latter as a preferred option. We describe in detail the implementation of a loosely coupled integrated network which provides two kinds of roaming services, a SimpleIP service and a Mobile-IP service. We present, in detail, two new components used to build these services: a network element called a WLAN integration gateway deployed in WLAN networks; a client software on the mobile device. For a mobile device with interfaces to both technologies, our system supports seamless handoff in the presence of overlapping radio coverage.


Proceedings of 1995 IEEE International Computer Performance and Dependability Symposium | 1995

DOCTOR: an integrated software fault injection environment for distributed real-time systems

Seung-Jae Han; Kang G. Shin; Harold Rosenberg

The paper presents an integrated software fault injection environment (DOCTOR) which is capable of (1) generating synthetic workloads under which system dependability is evaluated, (2) injecting various types of faults with different options, and (3) collecting performance and dependability data. A comprehensive graphical user interface is also provided. The software implemented fault-injection tools supports three types of faults: memory faults, CPU faults, and communication faults. Each injected fault may be permanent, transient or intermittent. A fault-injection plan can be formulated probabilistically, or based on the past event history. The modular organization of tools is particularly designed for distributed architectures. DOCTOR is implemented on a distributed real-time system called HARTS, and it capability has been tested through numerous experiments.<<ETX>>


IEEE Transactions on Mobile Computing | 2009

Cell Breathing Techniques for Load Balancing in Wireless LANs

Yigal Bejerano; Seung-Jae Han

Maximizing network throughput while providing fairness is one of the key challenges in wireless LANs (WLANs). This goal is typically achieved when the load of access points (APs) is balanced. Recent studies on operational WLANs, however, have shown that AP load is often substantially uneven. To alleviate such imbalance of load, several load balancing schemes have been proposed. These schemes commonly require proprietary software or hardware at the user side for controlling the user-AP association. In this paper we present a new load balancing technique by controlling the size of WLAN cells (i.e., APs coverage range), which is conceptually similar to cell breathing in cellular networks. The proposed scheme does not require any modification to the users neither the IEEE 802.11 standard. It only requires the ability of dynamically changing the transmission power of the AP beacon messages. We develop a set of polynomial time algorithms that find the optimal beacon power settings which minimize the load of the most congested AP. We also consider the problem of network-wide min-max load balancing. Simulation results show that the performance of the proposed method is comparable with or superior to the best existing association-based methods.


Computer Networks | 2007

Efficient load-balancing routing for wireless mesh networks

Yigal Bejerano; Seung-Jae Han; Amit Kumar

Wireless mesh networks (WMNs) consist of static wireless routers, some of which, called gateways, are directly connected to the wired infrastructure. User stations are connected to the wired infrastructure via wireless routers. This paper presents a simple and effective management architecture for WMNs, termed configurable access network (CAN). Under this architecture, the control function is separated from the switching function, so that the former is performed by an network operation center (NOC) which is located in the wired infrastructure. The NOC monitors the network topology and user performance requirements, from which it computes a path between each wireless router and a gateway, and allocates fair bandwidth for carrying the associated traffic along the selected route. By performing such functions in the NOC, we offload the network management overhead from wireless routers, and enable the deployment of simple/low-cost wireless routers. Our goal is to maximize the network utilization by balancing the traffic load, while providing fair service and quality of service (QoS) guarantees to the users. Since, this problem is NP-hard, we devise approximation algorithms that provide guarantees on the quality of the approximated solutions against the optimal solutions. The simulations show that the results of our algorithms are very close to the optimal solutions.


real-time systems symposium | 1997

Efficient spare-resource allocation for fast restoration of real-time channels from network component failures

Seung-Jae Han; Kang G. Shin

Since real-time applications usually require not only timeliness but also fault-tolerance, it is essential to incorporate fault-tolerance into real-time communication services that are indispensable to distributed real-time applications. The techniques for failure recovery in datagram communication are not adequate for real-time communication, because they cannot provide recovery-delay guarantees. To ensure fast recovery of a real-time channel from network component failures, we need to reserve network resources (spare resources) along a backup route before failures actually occur. The focus of this paper is on minimizing the amount of spare resources while meeting the fault-tolerance requirement. Specifically, we present resource sharing mechanisms and backup-route selection algorithms, and evaluate their efficiency with extensive simulations.


IEEE Journal on Selected Areas in Communications | 2004

Assignment strategies for mobile data users in hierarchical overlay networks: performance of optimal and adaptive strategies

Thierry E. Klein; Seung-Jae Han

Hierarchical wireless overlay networks have been proposed as an attractive alternative and extension of cellular network architectures to provide the necessary cell capacities to effectively support next-generation wireless data applications. In addition, they allow for flexible mobility management strategies and quality-of-service differentiation. One of the crucial problems in hierarchical overlay networks is the assignment of wireless data users to the different layers of the overlay architecture. In this paper, we present a framework and several analytical results pertaining to the performance of two assignment strategies based on the users velocity and the amount of data to be transmitted. The main contribution is to prove that the minimum average number of users in the system, as well as the minimum expected system load for an incoming user, are the same under both assignment strategies. We provide explicit analytical expressions as well as unique characterizations of the optimal thresholds on the velocity and amount of data to be transmitted. These results are very general and hold for any distribution of user profiles and any call arrival rates. We also show that intelligent assignment strategies yield significant gains over strategies that are oblivious to the user profiles. Adaptive and on-line strategies are derived that do not require any a priori knowledge of the user population and the network parameters. Extensive simulations are conducted to support the theoretical results presented and conclude that the on-line strategies achieve near-optimal performance when compared with off-line strategies.


acm special interest group on data communication | 1997

Fast restoration of real-time communication service from component failures in multi-hop networks

Seung-Jae Han; Kang G. Shin

For many applications it is important to provide communication services with guaranteed timeliness and fault-tolerance at an acceptable level of overhead. In this paper, we present a scheme for restoring real-time channels, each with guaranteed timeliness, from component failures in multi-hop networks. To ensure fast/guaranteed recovery, backup channels are set up a priori in addition to each primary channel. That is, a dependable real-time connection consists of a primary channel and one or more backup channels. If a primary channel fails, one of its backup channels is activated to become a new primary channel. We describe a protocol which provides an integrated solution to the failure-recovery problem (i.e., channel switching, resource re-allocation, ...). We also present a resource sharing method that significantly reduces the overhead of backup channels. The simulation results show that good coverage (in recovering from failures) can be achieved with about 30% degradation in network utilization under a reasonable failure condition. Moreover, the fault-tolerance level of each dependable connection can be controlled, independently of other connections, to reflect its criticality.


IEEE Transactions on Computers | 1998

A primary-backup channel approach to dependable real-time communication in multihop networks

Seung-Jae Han; Kang G. Shin

Many applications require communication services with guaranteed timeliness and fault tolerance at an acceptable level of overhead. We present a scheme for restoring real-time channels, each with guaranteed timeliness, from component failures in multihop networks. To ensure fast/guaranteed recovery, backup channels are set up a priori, in addition to each primary channel. That is, a dependable real-time connection consists of a primary channel and one or more backup channels. If a primary channel fails, one of its backup channels is activated to become a new primary channel. We propose a protocol which provides an Integrated solution for dependable real-time communication in multihop networks. We also present a resource sharing method that significantly reduces the overhead of backup channels. Good coverage (in recovering from failures) is shown to be achievable with about 30 percent degradation in network utilization under a reasonable failure condition. Moreover, the fault tolerance level of each dependable connection can be controlled, independently of other connections, to reflect its criticality.

Collaboration


Dive into the Seung-Jae Han's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge