Seung Jin Joo
Seoul National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Seung Jin Joo.
Science of The Total Environment | 2012
Seung Jin Joo; Soon-Ung Park; Moon-Soo Park; Chang Seok Lee
Soil respiration (R(soil)) is the largest component of ecosystem respiration produced by the autotrophic and heterotrophic respirations. Its variability on multiple time scales strongly depends on environmental variables such as temperature and moisture. To investigate the temporal variations of R(soil) in a cool-temperate oak (Quercus mongolica) forest at the Nam-San site in Seoul, Korea, continuous measurements of R(soil) using the automated chamber systems, air and soil temperatures and soil moisture are made for the period from April 2010 to March 2011. The observed data indicate that the R(soil) shows a remarkable seasonal variation in accordance with temperatures with high in summer and low in winter. The R(soil) is found to be strongly correlated with soil temperature (T(s)) at the 5cm depth throughout the year. However, the high fluctuation of R(soil) is found to be related with soil moisture content (M(s)) during the forest growing season. The estimated annual Q(10) value using the 1.5m-high air temperature is found to be 2.4 that is comparable with other studies in temperate forest ecosystems. The optimal regression equation of R(soil) with the T(s) at 5cm depth and the M(s) at 15cm depth is found to be R(soil)=124.3 exp (0.097T(s))-55.3 (M(s))(2)+2931.9 (M(s))-38516 for T(s)≥0°C and R(soil)=0 for T(s)<0°C with r(2)=0.97, P<0.01, suggesting the importance of T(s) and M(s) for R(soil). The annual total soil respiration estimated by the optimal regression equation is found to be 1264gCm(-2) with a maximum of 685gCm(-2) in the summer season and a minimum of 33gCm(-2) in the winter season. The present study can be implemented for the determination of the carbon balance of a cool-temperate Q. mongolica forest with the provision of photosynthesis.
Advances in Atmospheric Sciences | 2014
Moon-Soo Park; Seung Jin Joo; Soon-Ung Park
The carbon dioxide (CO2) concentrations and fluxes measured at a height of 17.5 m above the ground by a sonic anemometer and an open-path gas analyzer at an urban residential site in Seoul, Korea from February 2011 to January 2012 were analyzed. The annual mean CO2 concentration was found to be 750 mg m−3, with a maximum monthly mean concentration of 827 mg m−3 in January and a minimum value of 679 mg m−3 in August. Meanwhile, the annual mean CO2 flux was found to be 0.45 mg m−2 s−1, with a maximum monthly mean flux of 0.91 mg m−2 s−1 in January and a minimum value of 0.19 mg m−2 s−1 in June. The hourly mean CO2 concentration was found to show a significant diurnal variation; a maximum at 0700–0900 LST and a minimum at 1400–1600 LST, with a large diurnal range in winter and a small one in summer, mainly caused by diurnal changes in mixing height, CO2 flux, and surface complexity. The hourly mean CO2 flux was also found to show a significant diurnal variation, but it showed two maxima at 0700–0900 LST and 2100–2400 LST, and two minima at 1100–1500 LST and 0300–0500 LST, mainly caused by a diurnal pattern in CO2 emissions and sinks from road traffic, domestic heating and cooking by liquefied natural gas use, and the different horizontal distribution of CO2 sources and sinks near the site. Differential advection with respect to wind direction was also found to be a cause of diurnal variations in both the CO2 concentration and flux.
Advances in Atmospheric Sciences | 2013
Moon-Soo Park; Seung Jin Joo; Chang Seok Lee
The CO2 concentrations and fluxes over an urban forest site (Namsan) and an urban residential region (Boramae) in Seoul, Korea, during the non-growing season (2–4 March 2011), the growing season (10–12 June 2011), and the late-growing season (22–24 September 2011) were analyzed. The CO2 concentrations of two sites showed nearly the same diurnal variation, with a maximum value occurring during the night and a minimum value occurring during daytime, as well as the same seasonal variation, with a maximum value during the non-growing season (early spring) and a minimum value during the growing season (summer). The CO2 flux over the urban forest did not show any typical diurnal variation during the non-growing season, but did show diurnal variation with a small positive value during the night and a large negative value during daytime in the growing and late-growing seasons due to photosynthesis in the urban forest. The CO2 flux over the urban residential region showed a positive daily mean value for all periods, with large values during the non-growing season and small values during the growing season, and it also showed diurnal variation with two maxima at 0600–1000 LST and 1800–2400 LST, and two minima at 0300-0600 LST and 1100-1500 LST, and was strongly correlated with the use of liquefied natural gas for cooking and heating by surrounding houses.
Science of The Total Environment | 2016
Soon-Ung Park; In-Hye Lee; Seung Jin Joo
Aerosol Modeling System (AMS) that is consisted of the Asian Dust Aerosol Model2 (ADAM2) and the Community Multi-scale Air Quality (CMAQ) modeling system has been employed to document the spatial distributions of the monthly and the annual averaged concentration of both the Asian dust (AD) aerosol and the anthropogenic aerosol (AA), and their total depositions in the Asian region for the year 2010. It is found that the annual mean surface aerosol (PM10) concentrations in the Asian region affect in a wide region as a complex mixture of AA and AD aerosols; they are predominated by the AD aerosol in the AD source region of northern China and Mongolia with a maximum concentration exceeding 300 μg m(-3); AAs are predominated in the high pollutant emission regions of southern and eastern China and northern India with a maximum concentration exceeding 110 μg m(-3); while the mixture of AA and AD aerosols is dominated in the downwind regions extending from the Yellow Sea to the Northwest Pacific Ocean. It is also found that the annual total deposition of aerosols in the model domain is found to be 485 Tg (372 Tg by AD aerosol and 113 Tg by AA), of which 66% (319 Tg) is contributed by the dry deposition (305 Tg by AD aerosol and 14 Tg by AA) and 34% (166 Tg) by the wet deposition (66 Tg by AD aerosol and 100 Tg by AA), suggesting about 77% of the annual total deposition being contributed by the AD aerosol mainly through the dry deposition process and 24% of it by AA through the wet deposition process. The monthly mean aerosol concentration and the monthly total deposition show a significant seasonal variation with high in winter and spring, and low in summer.
Asia-pacific Journal of Atmospheric Sciences | 2015
Soon-Ung Park; In-Hye Lee; Anna Choe; Seung Jin Joo
The spatial distributions of annual mean concentrations and the annual total depositions of the Asian dust (AD) aerosol and the anthropogenic aerosol (AA) in 2010 are investigated with pollutant emissions over the whole model domain of Asia and without the pollutant emission from South Korea using the Aerosol Modeling System (AMS) that is modified from the Asian Dust Aerosol Model2 (ADAM2) and the Community Multi-Scale Air Quality (CMAQ) modeling System. The annual mean surface aerosol concentrations in Asia are found to affect a wide region as a complex mixture of AA and AD aerosols. However, the contribution of the pollutant emission from South Korea is found to be limited to the neighboring regions. The annual total aerosol deposition in Asia is 485.2 Tg. However, the contribution due to the pollutant emission from South Korea is about 1.9 Tg, suggesting of no significant contribution to the environment.
Journal of Environmental Radioactivity | 2016
Soon-Ung Park; In-Hye Lee; Jae-Won Ju; Seung Jin Joo
Atmosphere | 2014
Moon-Soo Park; Seung Jin Joo; Young Tae Son
한국기상학회 학술대회 논문집 | 2016
Soon-Ung Park; In-Hye Lee; Jae-Won Ju; Seung Jin Joo
한국기상학회 학술대회 논문집 | 2017
Soon-Ung Park; Seung Jin Joo; Jae Won Ju
Journal of Environmental Radioactivity | 2017
Soon-Ung Park; In-Hye Lee; Seung Jin Joo; Jae-Won Ju