Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Seung-Woo Jeong is active.

Publication


Featured researches published by Seung-Woo Jeong.


Journal of Contaminant Hydrology | 2003

A micromodel analysis of factors influencing NAPL removal by surfactant foam flooding

Seung-Woo Jeong; M. Yavuz Corapcioglu

A methodology to study the trichloroethylene (TCE) and dodecane removal in porous media by surfactant foams (SF) was presented by using etched-glass micromodels. The purpose of this work was to systematically evaluate the impact of various physicochemical factors such as gas fraction (GF), surfactant concentration, pore structure and nonaqueous phase liquid (NAPL) types on NAPL removal during SF flooding. The TCE displacement by SF was dependent on the gas fraction of SF. Low GFs (50% and 66%) were more efficient for TCE removal and sweep efficiencies than a high GF (85%). An increase in TCE removal was observed with increasing surfactant concentration at a fixed GF. TCE removal by SF flooding appeared to be dependent more to the value of Capillary number rather than to the concentration of surfactant solution. The effect of the pore heterogeneity was evaluated by employing two different types of micromodels. The Capillary number is an important parameter in the determination of sweep efficiency or gas saturation of SF in a nonhomogeneous porous medium. However, the TCE removal from a nonhomogeneous porous medium may not be associated with sweep efficiency. The initial configuration of residual TCE blobs in a nonhomogeneous porous medium would also be influential in displacing TCE. Sweep efficiencies and pressure responses of two NAPL systems (TCE and dodecane) were monitored to evaluate foam stability when the foam contacts the NAPLs. Stable foam contacting with TCE is implied, while it appears that dodecane cause the SF to collapse. All results indicate that the Capillary number (a ratio of viscous forces to capillary forces) is the most important parameter for TCE removal by SF flooding. Micromodel visualizations of water, surfactant and SF floods were showed and also discussed.


Journal of Hazardous Materials | 2010

Gamma radiolysis of alachlor aqueous solutions in the presence of hydrogen peroxide

Dongkyu Choi; O-Mi Lee; Seungho Yu; Seung-Woo Jeong

The enhanced effect of gamma irradiation with hydrogen peroxide (H(2)O(2)) for alachlor degradation in an aqueous solution was first investigated in this study. The combination of gamma irradiation and H(2)O(2) led to an enhanced effect, which remarkably increased the degradation efficiency of alachlor and the total organic carbon (TOC) removal. At a dose of 200 Gy, the degradation degree of the alachlor solution reached 81.7 and 99.2% under H(2)O(2) concentrations of 0 and 0.1 μM, respectively. In addition, the TOC removal efficiencies of the alachlor under initial H(2)O(2) concentrations of 0, 0.5 and 1.0 μM were 59.5, 74.8 and 83.8%, respectively, at an absorbed dose of 20 k Gy. However, for higher H(2)O(2) concentrations (greater than 1 μM), the alachlor degradation was reduced because OH radicals were scavenged by the H(2)O(2). The biodegradability of alachlor solutions prior to and after treatment by gamma irradiation was also assessed using the Closed Bottle Test (CBT). The results showed enhanced biodegradability of alachlor with increasing absorbed doses.


Journal of Hazardous Materials | 2009

Effects of additives on 2,4,6-trinitrotoluene (TNT) removal and its mineralization in aqueous solution by gamma irradiation

Byungjin Lee; Seung-Woo Jeong

The effects of additives (i.e., methanol, EDTA, mannitol, thiourea, nitrous oxide, oxygen and ozone) on gamma irradiation of 2,4,6-trinitrotoluene (TNT) were investigated to elucidate the initial reaction mechanism of TNT degradation and suggest an practical method for complete by-product removal. All additives, except thiourea, significantly increased the TNT removal efficiency by gamma irradiation. The overall results of the additive experiments implied that the TNT decomposition would be initiated by *OH, e(aq)(-), and HO(2*)/O(2*)(-), and also implied that *H did not have any direct effect on the TNT decomposition. Additions of methanol and nitrous oxide were more effective in TNT removal than the other additives, achieving complete removal of TNT at doses below 20 kGy. Total organic carbon (TOC) of the irradiated solution was analyzed to evaluate the degree of TNT mineralization under the additive conditions. TOC under the nitrous oxide addition was removed rapidly, and complete TNT mineralization was thus achieved at 50 kGy. Methanol addition was very effective in the TNT removal, but it was not effective in reduction in TOC. Trinitrobenzene (TNB), oxalic acid and glyoxalic acid were detected as radiolytic organic by-products, while ammonia and nitrate were detected as radiolytic inorganic by-products. The most efficient TNT removal and its mineralization by gamma irradiation would be achieved by supersaturating the solution with nitrous oxide before irradiation.


Journal of Hazardous Materials | 2012

Removal of trichloroethylene DNAPL trapped in porous media using nanoscale zerovalent iron and bimetallic nanoparticles: direct observation and quantification.

Qiliang Wang; Seung-Woo Jeong; Heechul Choi

Direct trichloroethylene (TCE) dense non-aqueous phase liquid (DNAPL) removal inside pore areas using nanoscale zerovalent iron (NZVI) and bimetallic nanoparticles were first investigated in a water-saturated porous glass micromodel. Effects of nitrate, aqueous ethanol co-solvent, humic substance, and elapsed time on TCE DNAPL removal using NZVI were studied by direct visualization. The removal efficiency was then quantified by directly measuring the remaining TCE DNAPL blobs area using an image analyzer. As ethanol content of co-solvent increased, TCE DNAPL removal by NZVI was also increased implying sequential TCE DNAPL removal mechanisms: as dissolved TCE was degraded by NZVI, TCE dissolution from TCE blobs would be then facilitated and the TCE blob areas would be eventually reduced. The presence of nitrate and humic substance hindered the NZVI reactivity for the TCE DNAPL removal. In contrast, the TCE DNAPL removal efficiency was enhanced using bimetallic nanoparticles in a short-term reaction by generating atomic hydrogen for catalytic hydro-dechlorination. However, all TCE DNAPL removal efficiencies reached the same level after long-term reaction using both NZVI and bimetallic nanoparticles. Direct TCE DNAPL observation clearly implied that TCE blobs existed for long time even though all TCE blobs were fully exposed to NZVI and bimetallic nanoparticles.


Environmental Science and Pollution Research | 2014

Water quality guidelines for chemicals: learning lessons to deliver meaningful environmental metrics

Graham Merrington; Youn-Joo An; Eric P. M. Grist; Seung-Woo Jeong; Chuthamat Rattikansukha; Susan Roe; Uwe A. Schneider; Suthipong Sthiannopkao; Glenn W. Suter; Rick A. van Dam; Patrick Van Sprang; Ju-Ying Wang; Michael Warne; Paul T. Yillia; Xiaowei Zhang; Kenneth M.Y. Leung

Many jurisdictions around the globe have well-developed regulatory frameworks for the derivation and implementation of water quality guidelines (WQGs) or their equivalent (e.g. environmental quality standards, criteria, objectives or limits). However, a great many more still do not have such frameworks and are looking to introduce practical methods to manage chemical exposures in aquatic ecosystems. There is a potential opportunity for learning and sharing of data and information between experts from different jurisdictions in order to deliver efficient and effective methods to manage potential aquatic risks, including the considerable reduction in the need for aquatic toxicity testing and the rapid identification of common challenges. This paper reports the outputs of an international workshop with representatives from 14 countries held in Hong Kong in December 2011. The aim of the workshop and this paper was to identify ‘good practice’ in the development of WQGs to deliver to a range of environmental management goals. However, it is important to broaden this consideration to cover often overlooked facets of implementable WQGs, such as demonstrable field validation (i.e. does the WQG protect what it is supposed to?), fit for purpose of monitoring frameworks (often an on-going cost) and finally how are these monitoring data used to support management decisions in a manner that is transparent and understandable to stakeholders. It is clear that regulators and the regulated community have numerous pressures and constraints on their resources. Therefore, the final section of this paper addresses potential areas of collaboration and harmonisation. Such approaches could deliver a consistent foundation from which to assess potential chemical aquatic risks, including, for example, the adoption of bioavailability-based approaches for metals, whilst reducing administrative and technical burdens in jurisdictions.


Journal of Hazardous Materials | 2015

Simple surface foam application enhances bioremediation of oil-contaminated soil in cold conditions

Seung-Woo Jeong; Jongshin Jeong; Jaisoo Kim

Landfarming of oil-contaminated soil is ineffective at low temperatures, because the number and activity of micro-organisms declines. This study presents a simple and versatile technique for bioremediation of diesel-contaminated soil, which involves spraying foam on the soil surface without additional works such as tilling, or supply of water and air. Surfactant foam containing psychrophilic oil-degrading microbes and nutrients was sprayed twice daily over diesel-contaminated soil at 6 °C. Removal efficiencies in total petroleum hydrocarbon (TPH) at 30 days were 46.3% for landfarming and 73.7% for foam-spraying. The first-order kinetic biodegradation rates for landfarming and foam-spraying were calculated as 0.019 d(-1) and 0.044 d(-1), respectively. Foam acted as an insulating medium, keeping the soil 2 °C warmer than ambient air. Sprayed foam was slowly converted to aqueous solution within 10-12h and infiltrated the soil, providing microbes, nutrients, water, and air for bioaugmentation. Furthermore, surfactant present in the aqueous solution accelerated the dissolution of oil from the soil, resulting in readily biodegradable aqueous form. Significant reductions in hydrocarbon concentration were simultaneously observed in both semi-volatile and non-volatile fractions. As the initial soil TPH concentration increased, the TPH removal rate of the foam-spraying method also increased.


Water Research | 2001

Micellar effect on the photolysis of hydrogen peroxide

Youn-Joo An; Seung-Woo Jeong; Elizabeth R. Carraway

Photolysis experiments were performed to quantify the effect of three anionic surfactants on the photolysis of hydrogen peroxide (H2O2) at the ambient laboratory temperature of 22+/-1 degrees C. H2O2 photolysis in water, methanol, and surfactant monomeric solution was also conducted to compare the photochemical reactivity of H2O2 in different media. Photolysis rates were highest for water, followed by micellar solutions, and lowest for methanol. The results show that the photochemical reactivity of H2O2 is less favorable in organic solvent than in water and surfactant micelles affect H2O2 photolysis. Retarded photolysis of H2O2 in micellar solutions implies that a fraction of H2O2 dissolved in water partitions into micellar pseudophase of surfactant. H2O2 partitioned into micelles has less photochemical reactivity and thus photolysis rate was retarded in the presence of micelles. Photolysis inhibitory level by micelles was shown to be dependent on the kinds of surfactants used in this study. In addition, the inhibitory effect by surfactant monomers was negligible due to the absence of micelles.


Science of The Total Environment | 2016

Evaluation of bioavailable arsenic and remediation performance using a whole-cell bioreporter.

Youngdae Yoon; Sunghoon Kim; Yooeun Chae; Seung-Woo Jeong; Youn-Joo An

The traditional method of evaluating the effects of soil contaminants on living organisms by measuring the total amount of contaminant has been largely inadequate, in part because testing contamination levels is hindered in real samples. Here we report a novel strategy for testing arsenic (As) bioavailability in soil samples by direct (in vivo) and indirect (in vitro) measurement using an Escherichia coli-based whole-cell bioreporter (WCB). The WCB was used to test As-amended Landwirtschaftliche Untersuchungs und Forschungsanstalt soils as well as field soils collected from a smelter area under remediation in order to evaluate the efficiency of bioavailable As removal. The percentage of bioavailable As in amended and field soils was 5.8% (range: 4.9%-7.6%) and 0.6% (0.08%-1.09%) of total As, respectively. In contaminated soils, total As was decreased, whereas bioavailable As was slightly increased after soil washing. These results emphasize the importance of considering ecotoxicological aspects of soil remediation; to this end, the WCB is a useful tool for evaluating the efficiency of soil remediation by assessing bioavailability along with the total amount of contaminant present.


Environmental Monitoring and Assessment | 2012

Construction of a chemical ranking system of soil pollution substances for screening of priority soil contaminants in Korea.

Seung-Woo Jeong; Youn-Joo An

The Korean government recently proposed expanding the number of soil-quality standards to 30 by 2015. The objectives of our study were to construct a reasonable protocol for screening priority soil contaminants for inclusion in the planned soil quality standard expansion. The chemical ranking system of soil pollution substances (CROSS) was first developed to serve as an analytical tool in chemical scoring and ranking of possible soil pollution substances. CROSS incorporates important parameters commonly used in several previous chemical ranking and scoring systems and the new soil pollution parameters. CROSS uses soil-related parameters in its algorithm, including information related to the soil environment, such as soil ecotoxicological data, the soil toxic release inventory (TRI), and soil partitioning coefficients. Soil TRI and monitoring data were incorporated as local specific parameters. In addition, CROSS scores the transportability of chemicals in soil because soil contamination may result in groundwater contamination. Dermal toxicity was used in CROSS only to consider contact with soil. CROSS uses a certainty score to incorporate data uncertainty. CROSS scores the importance of each candidate substance and assigns rankings on the basis of total scores. Cadmium was the most highly ranked. Generally, metals were ranked higher than other substances. Pentachlorophenol, phenol, dieldrin, and methyl tert-butyl ether were ranked the highest among chlorinated compounds, aromatic compounds, pesticides, and others, respectively. The priority substance list generated from CROSS will be used in selecting substances for possible inclusion in the Korean soil quality standard expansion; it will also provide important information for designing a soil-environment management scheme.


Environmental Earth Sciences | 2014

Ecological effects of soil antimony on the crop plant growth and earthworm activity

Yong-Wook Baek; Woo-Mi Lee; Seung-Woo Jeong; Youn-Joo An

High levels of antimony have been frequently detected in some industrial sites. This study evaluated the adverse effects of antimony (Sb) on the surface-casting activity of earthworm and the early growths of some important crop plants. Asian earthworm (Perionyx excavates) and four crop plant species (Chinese cabbage, Brassicacampestris; wheat, Triticum aestivum; cucumber, Cucumis sativus; and mung bean, Phaseolus radiatus) were exposed to soil antimony in laboratory. Survival, abnormality and the surface-casting activity of earthworm were monitored. Negative effects of the survival and the morphological abnormalities were observed in the P. excavates exposed to Sb. The earthworm activity, expressed as surface cast production, was significantly inhibited with elevated Sb levels. In terms of plant assay, the growth of all test plants was adversely affected in Sb-contaminated soils, and the content of Sb in plant tissues increased with increasing Sb concentration in soil. The results demonstrate that elevated Sb concentrations in soil would inhibit the early growth of crop plants, and the earthworm casting activity that is a key function of earthworm to increase soil fertility. This is the first report on the negative effect of Sb on the casting activity of earthworm as well as the growth of test plant species selected.

Collaboration


Dive into the Seung-Woo Jeong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Byungjin Lee

Kunsan National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge