Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yooeun Chae is active.

Publication


Featured researches published by Yooeun Chae.


Marine Pollution Bulletin | 2017

Effects of micro- and nanoplastics on aquatic ecosystems: Current research trends and perspectives

Yooeun Chae; Youn-Joo An

Contamination by bulk plastics and plastic debris is currently the one of the most serious environmental problems in aquatic ecosystems. In particular, small-scale plastic debris such as microplastics and nanoplastics has become leading contributors to the pollution of marine and freshwater ecosystems. Studies are investigating the impacts of micro-and nanoplastics on aquatic organisms and ecosystems worldwide. This review covers 83 studies that investigated the distribution of microplastics and the ecotoxicity of micro- and nanoplastics in marine and freshwater ecosystems. The studies indicated that micro-sized plastics and plastic debris were distributed at various concentrations in aquatic ecosystems around the world. They had various effects on the growth, development, behavior, reproduction, and mortality of aquatic animals. We discuss these studies in detail and suggest directions for future research.


Aquatic Toxicology | 2016

Toxicity and transfer of polyvinylpyrrolidone-coated silver nanowires in an aquatic food chain consisting of algae, water fleas, and zebrafish.

Yooeun Chae; Youn-Joo An

Nanomaterials of various shapes and dimensions are widely used in the medical, chemical, and electronic industries. Multiple studies have reported the ecotoxicological effects of nanaoparticles when released in aquatic and terrestrial ecosystems; however, information on the toxicity of silver nanowires (AgNWs) to freshwater organisms and their transfer through the food webs is limited. In the present study, we aimed to evaluate the toxicity of 10- and 20-μm-long AgNWs to the alga Chlamydomonas reinhardtii, the water flea Daphnia magna, and the zebrafish and study their movement through this three-species food chain using a variety of qualitative and quantitative methods as well as optical techniques. We found that AgNWs directly inhibited the growth of algae and destroyed the digestive organs of water fleas. The results showed that longer AgNWs (20μm) were more toxic than shorter ones (10μm) to both algae and water fleas, but shorter AgNWs were accumulated more than longer ones in the body of the fish. Overall, this study suggests that AgNWs are transferred through food chains, and that they affect organisms at higher trophic levels, potentially including humans. Therefore, further studies that take into account environmental factors, food web complexity, and differences between nanomaterials are required to gain better understanding of the impact of nanomaterials on natural communities and human health.


Nanotoxicology | 2016

Multispecies toxicity test for silver nanoparticles to derive hazardous concentration based on species sensitivity distribution for the protection of aquatic ecosystems

Jin Il Kwak; Rongxue Cui; Sun-Hwa Nam; Shin Woong Kim; Yooeun Chae; Youn-Joo An

Abstract With increasing concerns about the release of silver nanoparticles (AgNPs) into the environment and the risks they pose to ecological and human health, a number of studies of AgNP toxicity to aquatic organisms have been conducted. USEPA and EU JRC have published risk assessment reports for AgNPs. However, most previous studies have focused on the adverse effects of AgNPs on individual species. Hazardous concentration (HC) of AgNPs for protection of aquatic ecosystems that are based on species sensitivity distributions (SSDs) have not yet been derived because sufficient data have not been available. In this study, we conducted multispecies toxicity tests, including acute assays using eight species from five different taxonomic groups (bacteria, algae, flagellates, crustaceans and fish) and chronic assays using six species from four different taxonomic groups (algae, flagellates, crustaceans and fish). Using the results of these assays, we used a SSD approach to derive an AgNP aquatic HC5 (Hazard concentrations at the 5% species) of 0.614 μg/L. To our knowledge, this is the first report of a proposed HC of AgNPs for the protection of aquatic ecosystems that is based on SSDs and uses chronic toxicity data.


Science of The Total Environment | 2016

Evaluation of bioavailable arsenic and remediation performance using a whole-cell bioreporter.

Youngdae Yoon; Sunghoon Kim; Yooeun Chae; Seung-Woo Jeong; Youn-Joo An

The traditional method of evaluating the effects of soil contaminants on living organisms by measuring the total amount of contaminant has been largely inadequate, in part because testing contamination levels is hindered in real samples. Here we report a novel strategy for testing arsenic (As) bioavailability in soil samples by direct (in vivo) and indirect (in vitro) measurement using an Escherichia coli-based whole-cell bioreporter (WCB). The WCB was used to test As-amended Landwirtschaftliche Untersuchungs und Forschungsanstalt soils as well as field soils collected from a smelter area under remediation in order to evaluate the efficiency of bioavailable As removal. The percentage of bioavailable As in amended and field soils was 5.8% (range: 4.9%-7.6%) and 0.6% (0.08%-1.09%) of total As, respectively. In contaminated soils, total As was decreased, whereas bioavailable As was slightly increased after soil washing. These results emphasize the importance of considering ecotoxicological aspects of soil remediation; to this end, the WCB is a useful tool for evaluating the efficiency of soil remediation by assessing bioavailability along with the total amount of contaminant present.


Scientific Reports | 2018

Trophic transfer and individual impact of nano-sized polystyrene in a four-species freshwater food chain

Yooeun Chae; Dokyung Kim; Shin Woong Kim; Youn-Joo An

This study investigated the trophic transfer, individual impact, and embryonic uptake of fluorescent nano-sized polystyrene plastics (nanoplastics) through direct exposure in a freshwater ecosystem, with a food chain containing four species. The alga Chlamydomonas reinhardtii, water flea Daphnia magna, secondary-consumer fish Oryzias sinensis, and end-consumer fish Zacco temminckii were used as test species. In the trophic transfer test, algae were exposed to 50 mg/L nanoplastics, defined as plastic particles <100 nm in diameter; higher trophic level organisms were exposed through their diet. In the direct exposure test, each species was directly exposed to nanoplastics. Microscopic analysis confirmed that the nanoplastics adhered to the surface of the primary producer and were present in the digestive organs of the higher trophic level species. Nanoplastics also negatively affected fish activity, as measured by distance traveled and area covered, and induced histopathological changes in the livers of fish that were directly exposed. Additionally, nanoplastics penetrated the embryo walls and were present in the yolk sac of hatched juveniles. These observations clearly show that nanoplastics are easily transferred through food chain, albeit because of high experimental dosages. Nevertheless, the results strongly point to the potential health risks of nanoplastic exposure.


Environmental Science and Pollution Research | 2016

Arsenic bioavailability in soils before and after soil washing: the use of Escherichia coli whole-cell bioreporters

Youngdae Yoon; Yerin Kang; Yooeun Chae; Sunghoon Kim; Youngshim Lee; Seung-Woo Jeong; Youn-Joo An

We investigated the quantification of bioavailable arsenic in contaminated soils and evaluation of soil-washing processes in the aspect of bioavailability using a novel bacterial bioreporter developed in present study. The whole-cell bioreporter (WCB) was genetically engineered by fusing the promoter of nik operon from Escherichia coli and green fluorescent protein as a sensing domain and reporter domain. Among eight well-known hazardous heavy metals and metalloid, this system responded specifically to arsenic, thereby inferring association of As(III) with NikR inhibits the repression. Moreover, the response was proportional to the concentration of As(III), thereby it was capable to determine the amount of bioavailable arsenic quantitatively in contaminated soils. The bioavailable portion of arsenic was 5.9 (3.46–10.96) and 0.9 (0.27–1.74) % of total from amended and site soils, respectively, suggesting the bioavailability of arsenic in soils was related to the soil properties and duration of aging. On the other hand, only 1.37 (0.21–2.97) % of total arsenic was extracted into soil solutions and 19.88 (11.86–28.27) % of arsenic in soil solution was bioavailable. This result showed that the soluble arsenic is not all bioavailable and most of bioavailable arsenic in soils is water non-extractable. In addition, the bioavailable arsenic was increased after soil-washing while total amount was decreased, thereby suggesting the soil-washing processes release arsenic associated with soil materials to be bioavailable. Therefore, it would be valuable to have a tool to assess bioavailability and the bioavailability should be taken into consideration for soil remediation plans.


Environmental Science & Technology | 2017

Mixture Toxicity of Nickel and Microplastics with Different Functional Groups on Daphnia magna

Dokyung Kim; Yooeun Chae; Youn-Joo An

In recent years, discarded plastic has become an increasingly prevalent pollutant in aquatic ecosystems. These plastic wastes decompose into microplastics, which pose not only a direct threat to aquatic organisms but also an indirect threat via adsorption of other aquatic pollutants. In this study, we investigated the toxicities of variable and fixed combinations of two types of microplastics [one coated with a carboxyl group (PS-COOH) and the other lacking this functional group (PS)] with the heavy metal nickel (Ni) on Daphnia magna and calculated mixture toxicity using a toxic unit model. We found that toxicity of Ni in combination with either of the two microplastics differed from that of Ni alone. Furthermore, in general, we observed that immobilization of D. magna exposed to Ni combined with PS-COOH was higher than that of D. magna exposed to Ni combined with PS. Collectively, the results of our study indicate that the toxic effects of microplastics and pollutants may vary depending on the specific properties of the pollutant and microplastic functional groups, and further research on the mixture toxicity of various combinations of microplastics and pollutants is warranted.


Ecotoxicology and Environmental Safety | 2017

Exoenzyme activity in contaminated soils before and after soil washing: ß-glucosidase activity as a biological indicator of soil health

Yooeun Chae; Rongxue Cui; Shin Woong Kim; Gyeonghyeon An; Seung-Woo Jeong; Youn-Joo An

It is essential to remediate or amend soils contaminated with various heavy metals or pollutants so that the soils may be used again safely. Verifying that the remediated or amended soils meet soil quality standards is an important part of the process. We estimated the activity levels of eight soil exoenzymes (acid phosphatase, arylsulfatase, catalase, dehydrogenase, fluorescein diacetate hydrolase, protease, urease, and ß-glucosidase) in contaminated and remediated soils from two sites near a non-ferrous metal smelter, using colorimetric and titrimetric determination methods. Our results provided the levels of activity of soil exoenzymes that indicate soil health. Most enzymes showed lower activity levels in remediated soils than in contaminated soils, with the exception of protease and urease, which showed higher activity after remediation in some soils, perhaps due to the limited nutrients available in remediated soils. Soil exoenzymes showed significantly higher activity in soils from one of the sites than from the other, due to improper conditions at the second site, including high pH, poor nutrient levels, and a high proportion of sand in the latter soil. Principal component analysis revealed that ß-glucosidase was the best indicator of soil ecosystem health, among the enzymes evaluated. We recommend using ß-glucosidase enzyme activity as a prior indicator in estimating soil ecosystem health.


Applied Microbiology and Biotechnology | 2016

Simultaneous detection of bioavailable arsenic and cadmium in contaminated soils using dual-sensing bioreporters

Youngdae Yoon; Sunghoon Kim; Yooeun Chae; Shin Woong Kim; Yerin Kang; Gyeonghyeon An; Seung-Woo Jeong; Youn-Joo An

Whole-cell bioreporters (WCBs) have attracted increasing attention during the last few decades because they allow fast determination of bioavailable heavy metals in contaminated sites. Various WCBs to monitor specific heavy metals such as arsenic and cadmium in diverse environmental systems are available. However, currently, no study on simultaneous analysis of arsenic and cadmium has been reported, even though soils are contaminated by diverse heavy metals and metalloids. We demonstrated herein the development of dual-sensing WCBs to simultaneously quantify bioavailable arsenic and cadmium in contaminated sites by employing the promoter regions of the ars and znt operons as separate metal-sensing domains, and egfp and mcherry as reporter genes. The dual-sensing WCBs were generated by inserting two sets of genes into E. coli DH5α. The capability of WCBs was successfully proved to simultaneously quantify bioavailable arsenic and cadmium in amended Landwirtschaftliche Untersuchungs und Forschungsanstalt (LUFA) soils, and then, it was applied to contaminated field soils collected from a smelter area in Korea. As a result, it was noticed that the bioavailable portion of cadmium was higher than that of arsenic while the absolute amount of bioavailable arsenic and cadmium level was opposite. Since both cadmium and arsenic were assessed from the same E. coli cells, the data obtained by using dual-sensing WCBs would be more efficient and convenient than that from comparative WCB assay. In spite of advantageous aspects, to our knowledge, this is the first report on a dual-sensing WCB for rapid and concurrent quantification of bioavailable arsenic and cadmium in contaminated soils.


Journal of Agricultural and Food Chemistry | 2017

In Situ Evaluation of Crop Productivity and Bioaccumulation of Heavy Metals in Paddy Soils after Remediation of Metal-Contaminated Soils

Shin Woong Kim; Yooeun Chae; Jongmin Moon; Dokyung Kim; Rongxue Cui; Gyeonghyeon An; Seung-Woo Jeong; Youn-Joo An

Soils contaminated with heavy metals have been reused for agricultural, building, and industrial uses following remediation. This study assesses plant growth and bioaccumulation of heavy metals following remediation of industrially contaminated soil. The soil was collected from a field site near a nonferrous smelter and was subjected to laboratory- and field-scale studies. Soil from the contaminated site was remediated by washing with acid or mixed with soil taken from a distant uncontaminated site. The activities of various soil exoenzymes, the rate of plant growth, and the bioaccumulations of six heavy metals were measured to assess the efficacy of these bioremediation techniques. Growth of rice (Oryza sativa) was unaffected in acid-washed soil or the amended soil compared to untreated soil from the contaminated site. The levels of heavy metals in the rice kernels remained within safe limits in treated and untreated soils. Rice, sorghum (Sorghum bicolor), and wheat (Triticum aestivum) cultivated in the same soils in the laboratory showed similar growth rates. Soil exoenzyme activities and crop productivity were not affected by soil treatment in field experiments. In conclusion, treatment of industrially contaminated soil by acid washing or amendment did not adversely affect plant productivity or lead to increased bioaccumulation of heavy metals in rice.

Collaboration


Dive into the Yooeun Chae's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seung-Woo Jeong

Kunsan National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gyeonghyeon An

Kunsan National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge