Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Seungyong Han is active.

Publication


Featured researches published by Seungyong Han.


Advanced Materials | 2015

Highly Stretchable and Transparent Metal Nanowire Heater for Wearable Electronics Applications

Sukjoon Hong; Habeom Lee; Jinhwan Lee; Jinhyeong Kwon; Seungyong Han; Young Duk Suh; Hyunmin Cho; Jaeho Shin; Junyeob Yeo; Seung Hwan Ko

A highly stretchable and transparent electrical heater is demonstrated by constructing a partially embedded silver nanowire percolative network on an elastic substrate. The stretchable network heater is applied on human wrists under real-time strain, bending, and twisting, and has potential for lightweight, biocompatible, and versatile wearable applications.


Advanced Materials | 2015

A Hyper‐Stretchable Elastic‐Composite Energy Harvester

Chang Kyu Jeong; Jinhwan Lee; Seungyong Han; Jungho Ryu; Geon-Tae Hwang; Dae Yong Park; Jung Hwan Park; Seung S. Lee; Myunghwan Byun; Seung Hwan Ko; Keon Jae Lee

C. K. Jeong, G.-T. Hwang, D. Y. Park, J. H. Park, Dr. M. Byun, Prof. K. J. Lee Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro , Yuseong-gu , Daejeon 305-701 , South Korea E-mail: [email protected] Dr. J. Lee, Dr. S. Han, Prof. S. H. Ko Department of Mechanical Engineering Seoul National University 1 Gwanak-ro , Gwanak-gu , Seoul 151-742 , South Korea E-mail: [email protected] Dr. J. Lee, Prof. S. S. Lee Department of Mechanical Engineering Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro , Yuseong-gu , Daejeon 305-701 , South Korea Dr. J. Ryu Functional Ceramic Group Korea Institute of Materials Science (KIMS) 797 Changwon-daero Seongsan-gu Changwon , Gyeongsangnam-do 642–831 , South Korea


Science Translational Medicine | 2016

A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat

Ahyeon Koh; Daeshik Kang; Yeguang Xue; Seungmin Lee; Rafal M. Pielak; Jeonghyun Kim; Taehwan Hwang; Seunghwan Min; Anthony Banks; Philippe Bastien; Megan Manco; Liang Wang; Kaitlyn R. Ammann; Kyung In Jang; Phillip Won; Seungyong Han; Roozbeh Ghaffari; Ungyu Paik; Marvin J. Slepian; Guive Balooch; Yonggang Huang; John A. Rogers

A soft, skin-mounted microfluidic device captures microliter volumes of sweat and quantitatively measures biochemical markers by colorimetric analysis. Better health? Prepare to sweat Wearable technology is a popular way many people monitor their general health and fitness, tracking heart rate, calories, and steps. Koh et al. now take wearable technology one step further. They have developed and tested a flexible microfluidic device that adheres to human skin. This device collects and analyzes sweat during exercise. Using colorimetric biochemical assays and integrating smartphone image capture analysis, the device detected lactate, glucose, and chloride ion concentrations in sweat as well as sweat pH while stuck to the skin of individuals during a controlled cycling test. Colorimetric readouts showed comparable results to conventional analyses, and the sweat patches remained intact and functional even when used during an outdoor endurance bicycle race. The authors suggest that microfluidic devices could be used during athletic or military training and could be adapted to test other bodily fluids such as tears or saliva. Capabilities in health monitoring enabled by capture and quantitative chemical analysis of sweat could complement, or potentially obviate the need for, approaches based on sporadic assessment of blood samples. Established sweat monitoring technologies use simple fabric swatches and are limited to basic analysis in controlled laboratory or hospital settings. We present a collection of materials and device designs for soft, flexible, and stretchable microfluidic systems, including embodiments that integrate wireless communication electronics, which can intimately and robustly bond to the surface of the skin without chemical and mechanical irritation. This integration defines access points for a small set of sweat glands such that perspiration spontaneously initiates routing of sweat through a microfluidic network and set of reservoirs. Embedded chemical analyses respond in colorimetric fashion to markers such as chloride and hydronium ions, glucose, and lactate. Wireless interfaces to digital image capture hardware serve as a means for quantitation. Human studies demonstrated the functionality of this microfluidic device during fitness cycling in a controlled environment and during long-distance bicycle racing in arid, outdoor conditions. The results include quantitative values for sweat rate, total sweat loss, pH, and concentration of chloride and lactate.


ACS Applied Materials & Interfaces | 2014

Selective Sintering of Metal Nanoparticle Ink for Maskless Fabrication of an Electrode Micropattern Using a Spatially Modulated Laser Beam by a Digital Micromirror Device

Kunsik An; Sukjoon Hong; Seungyong Han; Hyung-Man Lee; Junyeob Yeo; Seung Hwan Ko

We demonstrate selective laser sintering of silver (Ag) nanoparticle (NP) ink using a digital micromirror device (DMD) for the facile fabrication of 2D electrode pattern without any conventional lithographic means or scanning procedure. An arbitrary 2D pattern at the lateral size of 25 μm × 25 μm with 160 nm height is readily produced on a glass substrate by a short exposure of 532 nm Nd:YAG continuous wave laser. The resultant metal pattern exhibits low electrical resistivity of 10.8 uΩ · cm and also shows a fine edge sharpness by the virtue of low thermal conductivity of Ag NP ink. Furthermore, 10 × 10 star-shaped micropattern arrays are fabricated through a step-and-repeat scheme to ensure the potential of this process for the large-area metal pattern fabrication.


Advanced Materials | 2016

Mechanically Reinforced Skin-Electronics with Networked Nanocomposite Elastomer

Seungyong Han; Min Ku Kim; Bo Wang; Dae Seung Wie; Shuodao Wang; Chi Hwan Lee

Mechanically reinforced skin-electronics are presented by exploiting networked nanocomposite elastomers where high quality metal nanowires serve as conducting paths. Theoretical and experimental studies show that the established skin-electronics exhibit superior mechanical enhancements against crack and delamination phenomena. Device applications include a class of biomedical devices that offers the ability of thermotherapeutic stimulation and electrophysiological monitoring, all via the skin.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation

Kyu Tae Lee; Yuan Yao; Junwen He; Brent Fisher; Xing Sheng; Matthew P. Lumb; Lu Xu; Mikayla A. Anderson; David Scheiman; Seungyong Han; Yongseon Kang; Abdurrahman Gumus; Rabab R. Bahabry; Jung Woo Lee; Ungyu Paik; Noah D. Bronstein; A. Paul Alivisatos; Matthew Meitl; Scott Burroughs; Muhammad Mustafa Hussain; Jeong Chul Lee; Ralph G. Nuzzo; John A. Rogers

Significance Concentrator photovoltaic (CPV) systems, wherein light focuses onto multijunction solar cells, offer the highest efficiencies in converting sunlight to electricity. The performance is intrinsically limited, however, by an inability to capture diffuse illumination, due to narrow acceptance angles of the concentrator optics. Here we demonstrate concepts where flat-plate solar cells mount onto the backplanes of the most sophisticated CPV modules to yield an additive contribution to the overall output. Outdoor testing results with two different hybrid module designs demonstrate absolute gains in average daily efficiencies of between 1.02% and 8.45% depending on weather conditions. The findings suggest pathways to significant improvements in the efficiencies, with economics that could potentially expand their deployment to a wide range of geographic locations. Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III–V semiconductor technologies. In this CPV+ scheme (“+” denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV+ modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation.


Science Translational Medicine | 2018

Battery-free, wireless sensors for full-body pressure and temperature mapping

Seungyong Han; Jeonghyun Kim; Sang Min Won; Yinji Ma; Daeshik Kang; Zhaoqian Xie; Kyu Tae Lee; Ha Uk Chung; Anthony Banks; Seunghwan Min; Seung Yun Heo; Charles R. Davies; Jung Woo Lee; Chi Hwan Lee; Bong Hoon Kim; Kan Li; Yadong Zhou; Chen Wei; Xue Feng; Yonggang Huang; John A. Rogers

Battery-free, soft, skin-mounted wireless sensors enable continuous, full-body spatiotemporal mapping of pressure and temperature on human subjects. Feeling the heat under pressure Pressure ulcers, or bedsores, can develop at skin sites overlying bony areas of the body when a patient remains in one position for an extended period. These sores can be difficult to detect in their early stages. To begin to address this, Han et al. developed flexible, adherent sensors that measure skin temperature and pressure in real time. The small sensors use wireless power to communicate with external reader antennas. Data acquired from multiple sensors were used to create full-body pressure and temperature maps, which detected changes in pressure due to adjusting the angle of hospital bed incline and changes in skin temperature during sleep in human participants during proof-of-concept studies. Thin, soft, skin-like sensors capable of precise, continuous measurements of physiological health have broad potential relevance to clinical health care. Use of sensors distributed over a wide area for full-body, spatiotemporal mapping of physiological processes would be a considerable advance for this field. We introduce materials, device designs, wireless power delivery and communication strategies, and overall system architectures for skin-like, battery-free sensors of temperature and pressure that can be used across the entire body. Combined experimental and theoretical investigations of the sensor operation and the modes for wireless addressing define the key features of these systems. Studies with human subjects in clinical sleep laboratories and in adjustable hospital beds demonstrate functionality of the sensors, with potential implications for monitoring of circadian cycles and mitigating risks for pressure-induced skin ulcers.


ACS Nano | 2017

Nanowire-on-Nanowire: All-Nanowire Electronics by On-Demand Selective Integration of Hierarchical Heterogeneous Nanowires

Habeom Lee; Wanit Manorotkul; Jinhwan Lee; Jinhyeong Kwon; Young Duk Suh; Dongwoo Paeng; Costas P. Grigoropoulos; Seungyong Han; Sukjoon Hong; Junyeob Yeo; Seung Hwan Ko

Exploration of the electronics solely composed of bottom-up synthesized nanowires has been largely limited due to the complex multistep integration of diverse nanowires. We report a single-step, selective, direct, and on-demand laser synthesis of a hierarchical heterogeneous nanowire-on-nanowire structure (secondary nanowire on the primary backbone nanowire) without using any conventional photolithography or vacuum deposition. The highly confined temperature rise by laser irradiation on the primary backbone metallic nanowire generates a highly localized nanoscale temperature field and photothermal reaction to selectively grow secondary branch nanowires along the backbone nanowire. As a proof-of-concept for an all-nanowire electronics demonstration, an all-nanowire UV sensor was successfully fabricated without using conventional fabrication processes.


Journal of Materials Chemistry C | 2018

Recent progress in silver nanowire based flexible/wearable optoelectronics

Jinhyeong Kwon; Young Duk Suh; Jinhwan Lee; Phillip Lee; Seungyong Han; Sukjoon Hong; Junyeob Yeo; Habeom Lee; Seung Hwan Ko

Among diverse nanomaterials, silver nanowire (AgNW) has reached a certain level of technological maturity, and numerous commercialized AgNW products are already on the market for research and prototype purposes. One of the potential applications for AgNW and its percolative form is in wearable electronics, owing to the superior electrical, optical and mechanical properties that arise from the material itself or the overall interconnected structure. For successful application towards wearable applications, constituent AgNWs should first have uniform and controllable properties. At the same time, it is preferential to develop relevant scalable fabrication processes, together with the verification of potential applications from a proof-of-concept standpoint. Based on these progresses, we summarize the recent developments in AgNW based flexible/wearable optoelectronic applications and foresee their future development.


Micromachines | 2017

Large-Area Compatible Laser Sintering Schemes with a Spatially Extended Focused Beam

Habeom Lee; Jinhyeong Kwon; Woo Shin; Hyeon Kim; Jaeho Shin; Hyunmin Cho; Seungyong Han; Junyeob Yeo; Sukjoon Hong

Selective laser sintering enables the facile production of metal nanoparticle-based conductive layers on flexible substrates, but its application towards large-area electronics has remained questionable due to the limited throughput of the laser process that originates from the direct writing nature. In this study, modified optical schemes are introduced for the fabrication of (1) a densely patterned conductive layer and (2) a thin-film conductive layer without any patterns. In detail, a focusing lens is substituted by a micro lens array or a cylindrical lens to generate multiple beamlets or an extended focal line. The modified optical settings are found to be advantageous for the creation of repetitive conducting patterns or areal sintering of the silver nanoparticle ink layer. It is further confirmed that these optical schemes are equally compatible with plastic substrates for its application towards large-area flexible electronics.

Collaboration


Dive into the Seungyong Han's collaboration.

Top Co-Authors

Avatar

Seung Hwan Ko

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Junyeob Yeo

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Jinhyeong Kwon

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Habeom Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Jinhwan Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Hyunmin Cho

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge