Severa Bunda
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Severa Bunda.
Nature Genetics | 2010
Charlotte M. Niemeyer; Michelle Kang; Danielle H. Shin; Ingrid Furlan; Miriam Erlacher; Nancy Bunin; Severa Bunda; Jerry Z. Finklestein; Kathleen M. Sakamoto; Thomas A. Gorr; Parinda A. Mehta; Irene Schmid; Gabriele Kropshofer; Selim Corbacioglu; Peter Lang; Christoph Klein; Paul-Gerhard Schlegel; Andrea Heinzmann; Michaela Schneider; Jan Starý; Marry M. van den Heuvel-Eibrink; Henrik Hasle; Franco Locatelli; Debbie Sakai; Sophie Archambeault; Leslie Chen; Ryan C. Russell; Stephanie S Sybingco; Michael Ohh; Benjamin S. Braun
CBL encodes a member of the Cbl family of proteins, which functions as an E3 ubiquitin ligase. We describe a dominant developmental disorder resulting from germline missense CBL mutations, which is characterized by impaired growth, developmental delay, cryptorchidism and a predisposition to juvenile myelomonocytic leukemia (JMML). Some individuals experienced spontaneous regression of their JMML but developed vasculitis later in life. Importantly, JMML specimens from affected children show loss of the normal CBL allele through acquired isodisomy. Consistent with these genetic data, the common p.371Y>H altered Cbl protein induces cytokine-independent growth and constitutive phosphorylation of ERK, AKT and S6 only in hematopoietic cells in which normal Cbl expression is reduced by RNA interference. We conclude that germline CBL mutations have developmental, tumorigenic and functional consequences that resemble disorders that are caused by hyperactive Ras/Raf/MEK/ERK signaling and include neurofibromatosis type 1, Noonan syndrome, Costello syndrome, cardiofaciocutaneous syndrome and Legius syndrome.
Nature Medicine | 2011
Ryan C. Russell; Roxana I. Sufan; Bing Zhou; Pardeep Heir; Severa Bunda; Stephanie S Sybingco; Samantha N Greer; Olga Roche; Samuel Heathcote; Vinca W. K. Chow; Lukasz M Boba; Terri D. Richmond; Michele M. Hickey; Dwayne L. Barber; David A. Cheresh; M. Celeste Simon; Meredith S. Irwin; William Y. Kim; Michael Ohh
Chuvash polycythemia is a rare congenital form of polycythemia caused by homozygous R200W and H191D mutations in the VHL (von Hippel-Lindau) gene, whose gene product is the principal negative regulator of hypoxia-inducible factor. However, the molecular mechanisms underlying some of the hallmark abnormalities of Chuvash polycythemia, such as hypersensitivity to erythropoietin, are unclear. Here we show that VHL directly binds suppressor of cytokine signaling 1 (SOCS1) to form a heterodimeric E3 ligase that targets phosphorylated JAK2 (pJAK2) for ubiquitin-mediated destruction. In contrast, Chuvash polycythemia–associated VHL mutants have altered affinity for SOCS1 and do not engage with and degrade pJAK2. Systemic administration of a highly selective JAK2 inhibitor, TG101209, reversed the disease phenotype in VhlR200W/R200W knock-in mice, an experimental model that recapitulates human Chuvash polycythemia. These results show that VHL is a SOCS1-cooperative negative regulator of JAK2 and provide biochemical and preclinical support for JAK2-targeted therapy in individuals with Chuvash polycythemia.
Journal of Biological Chemistry | 2009
Severa Bunda; Yanting Wang; Thomas F. Mitts; Peter Liu; Sara Arab; Majid Arabkhari; Aleksander Hinek
We previously demonstrated that aldosterone, which stimulates collagen production through the mineralocorticoid receptor (MR)-dependent pathway, also induces elastogenesis via a parallel MR-independent mechanism involving insulin-like growth factor-I receptor (IGF-IR) signaling. The present study provides a more detailed explanation of this signaling pathway. Our data demonstrate that small interfering RNA-driven elimination of MR in cardiac fibroblasts does not inhibit aldosterone-induced IGF-IR phosphorylation and subsequent increase in elastin production. These results exclude the involvement of the MR in aldosterone-induced increases in elastin production. Results of further experiments aimed at identifying the upstream signaling component(s) that might be activated by aldosterone also eliminate the putative involvement of pertussis toxin-sensitive Gαi proteins, which have previously been shown to be responsible for some MR-independent effects of aldosterone. Instead, we found that small interfering RNA-dependent elimination of another heterotrimeric G protein, Gα13, eliminates aldosterone-induced elastogenesis. We further demonstrate that aldosterone first engages Gα13 and then promotes its transient interaction with c-Src, which constitutes a prerequisite step for aldosterone-dependent activation of the IGF-IR and propagation of consecutive downstream elastogenic signaling involving phosphatidylinositol 3-kinase/Akt. In summary, the data we present reveal new details of an MR-independent cellular signaling pathway through which aldosterone stimulates elastogenesis in human cardiac fibroblasts.
Journal of Investigative Dermatology | 2010
Thomas F. Mitts; Severa Bunda; Yanting Wang; Aleksander Hinek
We have shown that the steroid hormone aldosterone, recognized for its action on the kidney and the cardiovascular system, also modulates deposition of extracellular matrix in human skin. We have shown that treatment of primary cultures of normal skin fibroblasts with aldosterone (10 n-1 μM), in addition to stimulation of collagen type I expression, induces elastin gene expression and elastic fiber deposition. We have further shown that the elastogenic effect of aldosterone, which can be enhanced in the presence of mineralocorticoid receptor (MR) antagonists spironolactone and eplerenone, is executed in a MR-independent manner via amplification of IGF-I receptor-mediated signaling. Because aldosterone applied alone stimulates both collagen and elastin deposition in cultures of fibroblasts and in cultures of skin explants derived from dermal stretch marks, we postulate that this steroid should be used in the treatment of damaged skin that loses its volume and elasticity. Moreover, aldosterone applied in conjunction with spironolactone or eplerenone induces matrix remodeling and exclusively enhances elastogenesis in cultures of fibroblasts and explants derived from dermal scars and keloids. We therefore propose that intra-lesional injection of these factors should be considered in therapy for disfiguring dermal lesions and especially in prevention of their recurrence after surgical excision.
Glycobiology | 2010
Majid Arabkhari; Severa Bunda; Yanting Wang; Andrew Wang; Alexey V. Pshezhetsky; Aleksander Hinek
We recently established that the subunit of cell surface-residing elastin receptor, neuraminidase-1 (Neu1), can desialylate adjacent insulin-like growth factor 1 receptors (IGF-1R) of arterial smooth muscle cells, thereby quenching their proliferative response to insulin-like growth factor II. In this study, we explored whether Neu1 would also desialylate the insulin receptors (IR), as well as the IGF-1R on rat skeletal L6 myoblasts, and whether desialylation of IR and IGF-1R would affect a net proliferative effect of insulin. First, we found that physiological (0.5-1 nM) and high therapeutic (10 nM) insulin concentrations induced a modest increase in proliferation rate of cultured L6 myoblasts. While IR kinase inhibitor could abolish the mitogenic effect of these insulin concentrations, the observed more pronounced proliferative response to supraphysiological concentration (100 nM) of insulin could be eliminated only by specific inhibition of IGF-1R. Then, we found that treatment of L6 cells with mouse-derived Neu1 or with Clostridium perfringens neuraminidase caused desialylation of IR, which coincided with a significant increase of their proliferative response to lower (0.5-10 nM) concentrations of insulin. In contrast, experimental desialylation of IGF-1R coincided with elimination of the heightened proliferative response of L6 myoblasts to 100 nM insulin. Importantly, we also found that inhibition of endogenous Neu1 abolished the increase in proliferation of L6 cells induced by 1 and 10 nM of insulin, but amplified the proliferative effect of 100 nM insulin. We therefore conclude that desialylation of both IR and IGF-1R by Neu1 controls the net proliferative response of skeletal myoblasts to insulin.
Cancer Research | 2013
Severa Bunda; Michelle Kang; Stephanie S Sybingco; Julie Weng; Helene Favre; Danielle H. Shin; Meredith S. Irwin; Mignon L. Loh; Michael Ohh
Juvenile myelomonocytic leukemia (JMML) is an aggressive myeloproliferative neoplasm in children characterized by the overproduction of monocytic cells that infiltrate the spleen, lung, and liver. JMML remains a disease for which few curative therapies are available other than myeloablative hematopoietic stem cell transplant (HSCT); however, relapse remains a major cause of treatment failure and the long-term morbidities of HSCT for survivors are substantial. A hallmark feature of JMML is acquired hypersensitivity by clonal myeloid progenitor cells to granulocyte macrophage-colony stimulating factor (GM-CSF) via a largely unknown mechanism. Here, we identify c-Cbl (henceforth referred to as Cbl) as a GM-CSF receptor (GMR) adaptor protein that targets Src for ubiquitin-mediated destruction upon GM-CSF stimulation and show that a loss of negative regulation of Src is pivotal in the hyperactivation of GMR signaling in Cbl-mutated JMML cells. Notably, dasatinib, an U.S. Food and Drug Administration-approved multikinase inhibitor that also targets Src family, dramatically attenuated the spontaneous and GM-CSF-induced hypersensitive growth phenotype of mononuclear cells from peripheral blood and bone marrow collected from JMML patients harboring Cbl or other known JMML-associated mutations. These findings reveal Src kinase as a critical oncogenic driver underlying JMML.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Severa Bunda; Pardeep Heir; Tharan Srikumar; Jonathan D. Cook; Kelly Burrell; Yoshihito Kano; Jeffrey E. Lee; Gelareh Zadeh; Brian Raught; Michael Ohh
Significance Despite the well-established connection between Ras and Src, there currently is no evidence of direct interaction between these two proteins. We show here that Src binds to and phosphorylates GTP-loaded Ras on a conserved Y32 residue within the switch I region. It has been shown that Raf binds to Ras with an affinity 1,000-fold greater than that of GAP. However, it has remained unclear how GAP is able to outcompete Raf for Ras upon Raf displacement. We show here that Y32 phosphorylation inhibits Raf binding to Ras and concomitantly promotes GAP association and GTP hydrolysis, thereby ensuring unidirectionality to the Ras GTPase cycle. These findings reveal new fundamental mechanistic insight into how Src negatively regulates Ras. Mutations in Ras GTPase and various other components of the Ras signaling pathways are among the most common genetic alterations in human cancers and also have been identified in several familial developmental syndromes. Over the past few decades it has become clear that the activity or the oncogenic potential of Ras is dependent on the nonreceptor tyrosine kinase Src to promote the Ras/Raf/MAPK pathway essential for proliferation, differentiation, and survival of eukaryotic cells. However, no direct relationship between Ras and Src has been established. We show here that Src binds to and phosphorylates GTP-, but not GDP-, loaded Ras on a conserved Y32 residue within the switch I region in vitro and that in vivo, Ras-Y32 phosphorylation markedly reduces the binding to effector Raf and concomitantly increases binding to GTPase-activating proteins and the rate of GTP hydrolysis. These results suggest that, in the context of predetermined crystallographic structures, Ras-Y32 serves as an Src-dependent keystone regulatory residue that modulates Ras GTPase activity and ensures unidirectionality to the Ras GTPase cycle.
Journal of Biological Chemistry | 2011
Sanjana Sen; Severa Bunda; Junyan Shi; Andrew H.-J. Wang; Thomas F. Mitts; Aleksander Hinek
The mechanism that leads to the inverse relationship between heightened cellular proliferation and the cessation of elastic fibers production, observed during formation of the arterial occlusions and dermal scars, is not fully understood. Because the retinoblastoma protein (Rb), responsible for cell cycle initiation, has also been implicated in insulin-like growth factor-I-mediated signaling stimulating elastin gene activation, we explored whether differential phosphorylation of Rb by various cyclin·cyclin-dependent kinase complexes would be responsible for promoting either elastogenic or pro-proliferative signals. We first tested cultures of dermal fibroblasts derived from Costello syndrome patients, in which heightened proliferation driven by mutated oncogenic H-Ras coincides with inhibition of elastogenesis. We found that Costello syndrome fibroblasts display elevated level of Rb phosphorylation on serine 780 (Ser(P)-780-Rb) and that pharmacological inhibition of Ras with radicicol, Mek/Erk with PD98059, or cyclin-dependent kinase 4 with PD0332991 not only leads to down-regulation of Ser(P)-780-Rb levels but also enhances Rb phosphorylation on threonine-821 (Thr(P)-821-Rb), which coincides with the recovery of elastin production. Then we demonstrated that treatment of normal skin fibroblasts with the pro-proliferative PDGF BB also up-regulates Ser(P)-780-Rb levels, but treatment with the pro-elastogenic insulin-like growth factor-I activates cyclinE-cdk2 complex to phosphorylate Rb on Thr-821. Importantly, we have established that elevation of Thr(P)-821-Rb promotes Rb binding to the Sp1 transcription factor and that successive binding of the Rb-Sp1 complex to the retinoblastoma control element within the elastin gene promoter stimulates tropoelastin transcription. In summary, we provide novel insight into the role of Rb in mediating the inverse relationship between elastogenesis and cellular proliferation.
PLOS ONE | 2013
Severa Bunda; Kamya Kommaraju; Pardeep Heir; Michael Ohh
Granulocyte-macrophage colony-stimulating factor (GM-CSF) and the related cytokines interleukin (IL)-3 and IL-5 regulate the production and functional activation of hematopoietic cells. GM-CSF acts on monocytes/macrophages and granulocytes, and several chronic inflammatory diseases and a number of haematological malignancies such as Juvenile myelomonocytic leukaemia (JMML) are associated with deregulated GM-CSF receptor (GMR) signaling. The downregulation of GMR downstream signaling is mediated in part by the clearance of activated GMR via the proteasome, which is dependent on the ubiquitylation of βc signaling subunit of GMR via an unknown E3 ubiquitin ligase. Here, we show that suppressor of cytokine signaling 1 (SOCS-1), best known for its ability to promote ubiquitin-mediated degradation of the non-receptor tyrosine kinase Janus kinase 2 (JAK2), also targets GMRβc for ubiquitin-mediated degradation and attenuates GM-CSF-induced downstream signaling.
Journal of Biological Chemistry | 2016
Pardeep Heir; Tharan Srikumar; George Bikopoulos; Severa Bunda; Betty P. Poon; Jeffrey E. Lee; Brian Raught; Michael Ohh
von Hippel-Lindau (VHL) disease is a rare familial cancer predisposition syndrome caused by a loss or mutation in a single gene, VHL, but it exhibits a wide phenotypic variability that can be categorized into distinct subtypes. The phenotypic variability has been largely argued to be attributable to the extent of deregulation of the α subunit of hypoxia-inducible factor α, a well established target of VHL E3 ubiquitin ligase, ECV (Elongins/Cul2/VHL). Here, we show that erythropoietin receptor (EPOR) is hydroxylated on proline 419 and 426 via prolyl hydroxylase 3. EPOR hydroxylation is required for binding to the β domain of VHL and polyubiquitylation via ECV, leading to increased EPOR turnover. In addition, several type-specific VHL disease-causing mutants, including those that have retained proper binding and regulation of hypoxia-inducible factor α, showed a severe defect in binding prolyl hydroxylated EPOR peptides. These results identify EPOR as the second bona fide hydroxylation-dependent substrate of VHL that potentially influences oxygen homeostasis and contributes to the complex genotype-phenotype correlation in VHL disease.