Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yanting Wang is active.

Publication


Featured researches published by Yanting Wang.


American Journal of Pathology | 2004

Retrovirally Mediated Overexpression of Versican V3 Reverses Impaired Elastogenesis and Heightened Proliferation Exhibited by Fibroblasts from Costello Syndrome and Hurler Disease Patients

Aleksander Hinek; Kathy R. Braun; Kela Liu; Yanting Wang; Thomas N. Wight

The phenotypic resemblance of patients with Costello syndrome and Hurler disease has been linked to impaired formation of elastic fibers that coincides with elevated cellular proliferation. Impaired elastogenesis in these diseases associates with respective abnormal accumulation of chondroitin sulfate and dermatan sulfate proteoglycans that induce cell surface shedding of elastin-binding protein (EBP) normally required for intracellular chaperoning of tropoelastin and its assembly into elastic fibers. A variant of the chondroitin sulfate proteoglycan versican, V3, which lacks chondroitin sulfate, has recently been shown to stimulate elastic fiber assembly and decrease proliferation when expressed by retroviral transduction in arterial smooth muscle cells. However, the mechanism(s) by which V3 influences this phenotype is not known. We now demonstrate that transduction of skin fibroblasts from Costello syndrome and Hurler disease patients with cDNA to versican V3 completely reverses impaired elastogenesis and restores normal proliferation of these cells. This phenotypic reversal is accompanied by loss of chondroitin sulfate from the cell surface and increased levels of EBP. Versican V3 transduction of skin fibroblasts from GM(1)-gangliosidosis patients, which lack EBP, failed to restore impaired elastogenesis. These results suggest that induction of elastic fiber production by gene transfer of versican V3 in skin fibroblasts is mediated by rescue of the tropoelastin chaperone, EBP.


Journal of Biological Chemistry | 2009

Aldosterone Stimulates Elastogenesis in Cardiac Fibroblasts via Mineralocorticoid Receptor-independent Action Involving the Consecutive Activation of Gα13, c-Src, the Insulin-like Growth Factor-I Receptor, and Phosphatidylinositol 3-Kinase/Akt

Severa Bunda; Yanting Wang; Thomas F. Mitts; Peter Liu; Sara Arab; Majid Arabkhari; Aleksander Hinek

We previously demonstrated that aldosterone, which stimulates collagen production through the mineralocorticoid receptor (MR)-dependent pathway, also induces elastogenesis via a parallel MR-independent mechanism involving insulin-like growth factor-I receptor (IGF-IR) signaling. The present study provides a more detailed explanation of this signaling pathway. Our data demonstrate that small interfering RNA-driven elimination of MR in cardiac fibroblasts does not inhibit aldosterone-induced IGF-IR phosphorylation and subsequent increase in elastin production. These results exclude the involvement of the MR in aldosterone-induced increases in elastin production. Results of further experiments aimed at identifying the upstream signaling component(s) that might be activated by aldosterone also eliminate the putative involvement of pertussis toxin-sensitive Gαi proteins, which have previously been shown to be responsible for some MR-independent effects of aldosterone. Instead, we found that small interfering RNA-dependent elimination of another heterotrimeric G protein, Gα13, eliminates aldosterone-induced elastogenesis. We further demonstrate that aldosterone first engages Gα13 and then promotes its transient interaction with c-Src, which constitutes a prerequisite step for aldosterone-dependent activation of the IGF-IR and propagation of consecutive downstream elastogenic signaling involving phosphatidylinositol 3-kinase/Akt. In summary, the data we present reveal new details of an MR-independent cellular signaling pathway through which aldosterone stimulates elastogenesis in human cardiac fibroblasts.


Journal of Investigative Dermatology | 2010

Aldosterone and Mineralocorticoid Receptor Antagonists Modulate Elastin and Collagen Deposition in Human Skin

Thomas F. Mitts; Severa Bunda; Yanting Wang; Aleksander Hinek

We have shown that the steroid hormone aldosterone, recognized for its action on the kidney and the cardiovascular system, also modulates deposition of extracellular matrix in human skin. We have shown that treatment of primary cultures of normal skin fibroblasts with aldosterone (10 n-1 μM), in addition to stimulation of collagen type I expression, induces elastin gene expression and elastic fiber deposition. We have further shown that the elastogenic effect of aldosterone, which can be enhanced in the presence of mineralocorticoid receptor (MR) antagonists spironolactone and eplerenone, is executed in a MR-independent manner via amplification of IGF-I receptor-mediated signaling. Because aldosterone applied alone stimulates both collagen and elastin deposition in cultures of fibroblasts and in cultures of skin explants derived from dermal stretch marks, we postulate that this steroid should be used in the treatment of damaged skin that loses its volume and elasticity. Moreover, aldosterone applied in conjunction with spironolactone or eplerenone induces matrix remodeling and exclusively enhances elastogenesis in cultures of fibroblasts and explants derived from dermal scars and keloids. We therefore propose that intra-lesional injection of these factors should be considered in therapy for disfiguring dermal lesions and especially in prevention of their recurrence after surgical excision.


Glycobiology | 2010

Desialylation of insulin receptors and IGF-1 receptors by neuraminidase-1 controls the net proliferative response of L6 myoblasts to insulin

Majid Arabkhari; Severa Bunda; Yanting Wang; Andrew Wang; Alexey V. Pshezhetsky; Aleksander Hinek

We recently established that the subunit of cell surface-residing elastin receptor, neuraminidase-1 (Neu1), can desialylate adjacent insulin-like growth factor 1 receptors (IGF-1R) of arterial smooth muscle cells, thereby quenching their proliferative response to insulin-like growth factor II. In this study, we explored whether Neu1 would also desialylate the insulin receptors (IR), as well as the IGF-1R on rat skeletal L6 myoblasts, and whether desialylation of IR and IGF-1R would affect a net proliferative effect of insulin. First, we found that physiological (0.5-1 nM) and high therapeutic (10 nM) insulin concentrations induced a modest increase in proliferation rate of cultured L6 myoblasts. While IR kinase inhibitor could abolish the mitogenic effect of these insulin concentrations, the observed more pronounced proliferative response to supraphysiological concentration (100 nM) of insulin could be eliminated only by specific inhibition of IGF-1R. Then, we found that treatment of L6 cells with mouse-derived Neu1 or with Clostridium perfringens neuraminidase caused desialylation of IR, which coincided with a significant increase of their proliferative response to lower (0.5-10 nM) concentrations of insulin. In contrast, experimental desialylation of IGF-1R coincided with elimination of the heightened proliferative response of L6 myoblasts to 100 nM insulin. Importantly, we also found that inhibition of endogenous Neu1 abolished the increase in proliferation of L6 cells induced by 1 and 10 nM of insulin, but amplified the proliferative effect of 100 nM insulin. We therefore conclude that desialylation of both IR and IGF-1R by Neu1 controls the net proliferative response of skeletal myoblasts to insulin.


American Journal of Physiology-heart and Circulatory Physiology | 2008

Heightened aberrant deposition of hard-wearing elastin in conduit arteries of prehypertensive SHR is associated with increased stiffness and inward remodeling

Silvia M. Arribas; Ana M. Briones; Catherine Bellingham; M. Carmen González; Mercedes Salaices; Kela Liu; Yanting Wang; Aleksander Hinek

Elastin is a major component of conduit arteries and a key determinant of vascular viscoelastic properties. Aberrant organization of elastic lamellae has been reported in resistance vessels from spontaneously hypertensive rats (SHR) before the development of hypertension. Hence, we have characterized the content and organization of elastic lamellae in conduit vessels of neonatal SHR in detail, comparing the carotid arteries from 1-wk-old SHR with those from Wistar-Kyoto (WKY) and Sprague Dawley (SD) rats. The general structure and mechanics were studied by pressure myography, and the internal elastic lamina organization was determined by confocal microscopy. Cyanide bromide-insoluble elastin scaffolds were also prepared from 1-mo-old SHR and WKY aortas to assess their weight, amino acid composition, three-dimensional lamellar organization, and mechanical characteristics. Carotid arteries from 1-wk-old SHR exhibited narrower lumen and greater intrinsic stiffness than those from their WKY and SD counterparts. These aberrations were associated with heightened elastin content and with a striking reduction in the size of the fenestrae present in the elastic lamellae. The elastin scaffolds isolated from SHR aortas also exhibited increased relative weight and stiffness, as well as the presence of peculiar trabeculae inside the fenestra that reduced their size. We suggest that the excessive and aberrant elastin deposited in SHR vessels during perinatal development alters their mechanical properties. Such abnormalities are likely to compromise vessel expansion during a critical period of growth and, at later stages, they could compromise hemodynamic function and participate in the development of systemic hypertension.


American Journal of Pathology | 2012

Insulin induces production of new elastin in cultures of human aortic smooth muscle cells.

Junyan Shi; Andrew Wang; Sanjana Sen; Yanting Wang; Hyunjun J. Kim; Thomas F. Mitts; Aleksander Hinek

Diabetes mellitus accelerates atherosclerotic progression, peripheral angiopathy development, and arterial hypertension, all of which are associated with elastic fiber disease. However, the potential mechanistic links between insulin deficiency and impaired elastogenesis in diabetes have not been explored. Results of the present study reveal that insulin administered in therapeutically relevant concentrations (0.5 to 10 nmol/L) selectively stimulates formation of new elastic fibers in cultures of human aortic smooth muscle cells. These concentrations of insulin neither up-regulate collagen type I and fibronectin deposition nor stimulate cellular proliferation. Further, the elastogenic effect of insulin occurs after insulin receptor activation, which triggers the PI3K downstream signaling pathway and activates elastin gene transcription. In addition, the promoter region of the human elastin gene contains the CAAATAA sequence, consistent with the FoxO-recognized element, and the genomic effects of insulin occur after removal of the FoxO1 transcriptional inhibitor from the FoxO-recognized element in the elastin gene promoter. In addition, insulin signaling facilitates the association of tropoelastin with its specific 67-kDa elastin-binding protein/spliced form of β-galactosidase chaperone, enhancing secretion. These results are crucial to understanding of the molecular and cellular mechanisms of diabetes-associated vascular disease, and, in particular, endorse use of insulin therapy for treatment of atherosclerotic lesions in patients with type 1 diabetes, in which induction of new elastic fibers would mechanically stabilize the developing plaques and prevent arterial occlusions.


European Journal of Human Genetics | 2011

Dexamethasone normalizes aberrant elastic fiber production and collagen 1 secretion by Loeys-Dietz syndrome fibroblasts: a possible treatment?

Christopher Barnett; David Chitayat; Timothy J. Bradley; Yanting Wang; Aleksander Hinek

Loeys–Dietz syndrome (LDS) is an autosomal dominant connective tissue disorder characterized by facial dysmorphism, cleft palate, dilation of the aortic arch, blood vessel tortuosity and a high risk of aortic dissection. It is caused by mutations in the transforming growth factor β-receptor 1 and 2 (TGFβ-R1 and TGFβ-R2) genes. Fibroblasts derived from 12 Loeys–Dietz syndrome patients, six with TGFB-R1 mutations and six with TGFB-R2 mutations, were analyzed using RT-PCR, biochemical assays, immunohistochemistry and electron microscopy for production of elastin, fibrillin 1, fibulin 1 and fibulin 4 and deposition of collagen type I. All LDS fibroblasts with TGFβ-R1 mutations demonstrated decreased expression of elastin and fibulin 1 genes and impaired deposition of elastic fibers. In contrast, fibroblasts with TGFβ-R2 mutations consistently demonstrated intracellular accumulation of collagen type I in the presence of otherwise normal elastic fiber production. Treatment of the cell cultures with dexamethasone induced remarkable upregulation in the expression of tropoelastin, fibulin 1- and fibulin 4-encoding mRNAs, leading to normalization of elastic fiber production in fibroblasts with TGFβ-R1 mutations. Treatment with dexamethasone also corrected the abnormal secretion of collagen type I from fibroblasts with TGFβ-R2 gene mutations. As the organogenesis-relevant elastic fiber production occurs exclusively in late fetal and early neonatal life, these findings may have implications for treatment in early life. Further studies are required to determine if dexamethasone treatment of fetuses prenatally diagnosed with LDS would prevent or alleviate the connective tissue and vascular defects seen in this syndrome.


Experimental Cell Research | 2014

Phytoestrogen, tanshinone IIA diminishes collagen deposition and stimulates new elastogenesis in cultures of human cardiac fibroblasts

Shuai Mao; Yanting Wang; Minzhou Zhang; Aleksander Hinek

It has been previously reported that oral or intra-peritoneal administration of tanshinone IIA can alleviate the ventricular hypertrophy and fibrosis that develops in rats after experimental cardiac infarction. Our present studies, performed on cultures of human cardiac fibroblasts, investigated the mechanism by which tanshinone IIA produces these beneficial effects. We found that treatment of cardiac fibroblasts with 0.1-10µM tanshinone IIA significantly inhibited their deposition of collagen I, while enhancing production of new elastic fibers. Moreover, both anti-collagenogenic and pro-elastogenic effects of tanshinone IIA occurred only after selective activation of the G protein-coupled estrogen receptor (GPER). This subsequently leads to initiation of the PKA/CREB phosphorylation pathway that inversely modulated transcription of collagen I and elastin genes. Interestingly, treatment of human cardiac fibroblasts with tanshinone IIA additionally up-regulated the production of the 67-kDa elastin binding protein, which facilitates tropoelastin secretion, and increased synthesis of lysyl oxidase, catalyzing cross-linkings of tropoelastin. Moreover, tanshinone IIA also caused up-regulation in the synthesis of collagenolytic MMP-1, but down-regulated levels of elastolytic MMP-2 and MMP-9. In summary, our data validate a novel mechanism in which tanshinone IIA, interacting with a non-classic estrogen receptor, maintains the proper balance between the net deposition of collagen and elastin, allowing for optimal durability and resiliency of the newly deposited matrix.


Experimental Physiology | 2010

Enhanced survival of vascular smooth muscle cells accounts for heightened elastin deposition in arteries of neonatal spontaneously hypertensive rats

Silvia M. Arribas; Carmen Hermida; M. Carmen González; Yanting Wang; Aleksander Hinek

Abnormal stiffening and narrowing of arteries are characteristic features of spontaneously hypertensive rats (SHR). In this strain, we have previously demonstrated an increased elastin content and abnormal organization of lamellae in conduit and resistance arteries from neonatal rats that preceded the impending inward remodelling, increased vascular stiffness and development of hypertension. The aim of this study was to assess the mechanism responsible for such excessive and aberrant elastin deposition in SHR vessels during perinatal development. We compared elastin, collagen and fibronectin production (inmunocytochemistry and quantitative assay of metabolically labelled insoluble elastin), DNA content as well as cell proliferation (proliferative cellular nuclear antigen, bromodeoxyuridine incorporation) and death rates (propidium iodide exclusion test, terminal transferase nick and labeling (TUNEL) assay) in cultures of vascular smooth muscle cells (VSMC) derived from neonatal SHR and Wistar–Kyoto (WKY) control rats. Cultures of VSMC derived from neonatal SHR exhibited hypertrophy, produced more elastin, collagen and fibronectin and contained more DNA than equally plated WKY counterparts. Further analysis revealed that the higher net DNA content in SHR‐derived cultures was due to increased diploidy, but not to a heightened cell multiplication. The SHR‐derived VSMC also exhibited lower rates of cell death and apoptosis, which were associated with increased levels of the anti‐apoptotic protein, survivin. We therefore conclude that the peculiar heightened survival of matrix‐producing VSMC in neonatal SHR is responsible for accumulation of hard‐wearing elastin and other extracellular matrix elements in the growing arteries, thereby contributing to the subsequent development of systemic hypertension.


Journal of Dermatological Science | 2014

Sodium l-ascorbate enhances elastic fibers deposition by fibroblasts from normal and pathologic human skin

Aleksander Hinek; Hyunjun J. Kim; Yanting Wang; Andrew H.-J. Wang; Thomas F. Mitts

BACKGROUND Vitamin C (L-ascorbic acid), a known enhancer of collagen deposition, has also been identified as an inhibitor of elastogenesis. OBJECTIVE Present studies explored whether and how the L-ascorbic acid derivative (+) sodium L-ascorbate (SA) would affect production of collagen and elastic fibers in cultures of fibroblasts derived from normal human skin and dermal fat, as well as in explants of normal human skin, stretch-marked skin and keloids. METHODS Effects of SA on the extracellular matrix production were assessed quantitatively by PCR analyses, western blots, biochemical assay of insoluble elastin and by immuno-histochemistry. We also evaluated effects of SA on production of the reactive oxygen species (ROS) and phosphorylation of IGF-I and insulin receptors. RESULTS SA, applied in 50-200 μM concentrations, stimulates production of both collagen and elastic fibers in all tested cultures. Moreover, combination of SA with a proline hydroxylase inhibitor induces a beneficial remodelling in explants of dermal scars, resulting in the inhibition of collagen deposition and induction of new elastogenesis. Importantly, we revealed that SA stimulates elastogenesis only after intracellular influx of non-oxidized ascorbate anions (facilitated by the sodium-dependent ascorbate transporter), that causes reduction of intracellular ROS, activation of c-Src tyrosine kinase and the enhancement of IGF-1-induced phosphorylation of the IGF-1 receptor that ultimately triggers elastogenic signalling pathway. CONCLUSION Our results endorse the use of this potent stimulator of collagen and elastin production in the treatment of wrinkled and stretch-marked skin. They also encourage inclusion of SA into therapeutic combinations with collagenogenesis inhibitors to prevent formation of dermal scars and keloids.

Collaboration


Dive into the Yanting Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kela Liu

University of Toronto

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gordon Keller

University Health Network

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge