Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Severin Uebbing is active.

Publication


Featured researches published by Severin Uebbing.


Nature | 2012

The genomic landscape of species divergence in Ficedula flycatchers

Hans Ellegren; Linnéa Smeds; Reto Burri; Pall Olason; Niclas Backström; Takeshi Kawakami; Axel Künstner; Hannu Mäkinen; Krystyna Nadachowska-Brzyska; Anna Qvarnström; Severin Uebbing; Jochen B. W. Wolf

Unravelling the genomic landscape of divergence between lineages is key to understanding speciation. The naturally hybridizing collared flycatcher and pied flycatcher are important avian speciation models that show pre- as well as postzygotic isolation. We sequenced and assembled the 1.1-Gb flycatcher genome, physically mapped the assembly to chromosomes using a low-density linkage map and re-sequenced population samples of each species. Here we show that the genomic landscape of species differentiation is highly heterogeneous with approximately 50 ‘divergence islands’ showing up to 50-fold higher sequence divergence than the genomic background. These non-randomly distributed islands, with between one and three regions of elevated divergence per chromosome irrespective of chromosome size, are characterized by reduced levels of nucleotide diversity, skewed allele-frequency spectra, elevated levels of linkage disequilibrium and reduced proportions of shared polymorphisms in both species, indicative of parallel episodes of selection. Proximity of divergence peaks to genomic regions resistant to sequence assembly, potentially including centromeres and telomeres, indicate that complex repeat structures may drive species divergence. A much higher background level of species divergence of the Z chromosome, and a lower proportion of shared polymorphisms, indicate that sex chromosomes and autosomes are at different stages of speciation. This study provides a roadmap to the emerging field of speciation genomics.


BMC Genomics | 2012

Sequencing of the needle transcriptome from Norway spruce (Picea abies Karst L.) reveals lower substitution rates, but similar selective constraints in gymnosperms and angiosperms

Jun Chen; Severin Uebbing; Niclas Gyllenstrand; Ulf Lagercrantz; Martin Lascoux; Thomas Källman

BackgroundA detailed knowledge about spatial and temporal gene expression is important for understanding both the function of genes and their evolution. For the vast majority of species, transcriptomes are still largely uncharacterized and even in those where substantial information is available it is often in the form of partially sequenced transcriptomes. With the development of next generation sequencing, a single experiment can now simultaneously identify the transcribed part of a species genome and estimate levels of gene expression.ResultsmRNA from actively growing needles of Norway spruce (Picea abies) was sequenced using next generation sequencing technology. In total, close to 70 million fragments with a length of 76 bp were sequenced resulting in 5 Gbp of raw data. A de novo assembly of these reads, together with publicly available expressed sequence tag (EST) data from Norway spruce, was used to create a reference transcriptome. Of the 38,419 PUTs (putative unique transcripts) longer than 150 bp in this reference assembly, 83.5% show similarity to ESTs from other spruce species and of the remaining PUTs, 3,704 show similarity to protein sequences from other plant species, leaving 4,167 PUTs with limited similarity to currently available plant proteins. By predicting coding frames and comparing not only the Norway spruce PUTs, but also PUTs from the close relatives Picea glauca and Picea sitchensis to both Pinus taeda and Taxus mairei, we obtained estimates of synonymous and non-synonymous divergence among conifer species. In addition, we detected close to 15,000 SNPs of high quality and estimated gene expression differences between samples collected under dark and light conditions.ConclusionsOur study yielded a large number of single nucleotide polymorphisms as well as estimates of gene expression on transcriptome scale. In agreement with a recent study we find that the synonymous substitution rate per year (0.6 × 10−09and 1.1 × 10−09) is an order of magnitude smaller than values reported for angiosperm herbs. However, if one takes generation time into account, most of this difference disappears. The estimates of the dN/dS ratio (non-synonymous over synonymous divergence) reported here are in general much lower than 1 and only a few genes showed a ratio larger than 1.


Genome Biology and Evolution | 2013

Transcriptome Sequencing Reveals the Character of Incomplete Dosage Compensation across Multiple Tissues in Flycatchers

Severin Uebbing; Axel Künstner; Hannu Mäkinen; Hans Ellegren

Sex chromosome divergence, which follows the cessation of recombination and degeneration of the sex-limited chromosome, can cause a reduction in expression level for sex-linked genes in the heterozygous sex, unless some mechanisms of dosage compensation develops to counter the reduction in gene dose. Because large-scale perturbations in expression levels arising from changes in gene dose might have strong deleterious effects, the evolutionary response should be strong. However, in birds and in at least some other female heterogametic organisms, wholesale sex chromosome dosage compensation does not seem to occur. Using RNA-seq of multiple tissues and individuals, we investigated male and female expression levels of Z-linked and autosomal genes in the collared flycatcher, a bird for which a draft genome sequence recently has been reported. We found that male expression of Z-linked genes was on average 50% higher than female expression, although there was considerable variation in the male-to-female ratio among genes. The ratio for individual genes was well correlated among tissues and there was also a correlation in the extent of compensation between flycatcher and chicken orthologs. The relative excess of male expression was positively correlated with expression breadth, expression level, and number of interacting proteins (protein connectivity), and negatively correlated with variance in expression. These observations lead to a model of compensation occurring on a gene-by-gene basis, supported by an absence of clustering of genes on the Z chromosome with respect to the extent of compensation. Equal mean expression level of autosomal and Z-linked genes in males, and 50% higher expression of autosomal than Z-linked genes in females, is compatible with that partial compensation is achieved by hypertranscription from females’ single Z chromosome. A comparison with male-to-female expression ratios in orthologous Z-linked genes of ostriches, where Z–W recombination still occurs, suggests that male-biased expression of Z-linked genes is a derived trait after avian sex chromosome divergence.


Nature Communications | 2015

Evolutionary analysis of the female-specific avian W chromosome.

Linnéa Smeds; Vera Warmuth; Paulina Bolívar; Severin Uebbing; Reto Burri; Alexander Suh; Alexander Nater; Stanislav Bureš; László Zsolt Garamszegi; Silje Hogner; Juan Moreno; Anna Qvarnström; Milan Ružić; Stein-Are Sæther; Glenn-Peter Sætre; János Török; Hans Ellegren

The typically repetitive nature of the sex-limited chromosome means that it is often excluded from or poorly covered in genome assemblies, hindering studies of evolutionary and population genomic processes in non-recombining chromosomes. Here, we present a draft assembly of the non-recombining region of the collared flycatcher W chromosome, containing 46 genes without evidence of female-specific functional differentiation. Survival of genes during W chromosome degeneration has been highly non-random and expression data suggest that this can be attributed to selection for maintaining gene dose and ancestral expression levels of essential genes. Re-sequencing of large population samples revealed dramatically reduced levels of within-species diversity and elevated rates of between-species differentiation (lineage sorting), consistent with low effective population size. Concordance between W chromosome and mitochondrial DNA phylogenetic trees demonstrates evolutionary stable matrilineal inheritance of this nuclear–cytonuclear pair of chromosomes. Our results show both commonalities and differences between W chromosome and Y chromosome evolution.


Nature Communications | 2014

Genomic identification and characterization of the pseudoautosomal region in highly differentiated avian sex chromosomes

Linnéa Smeds; Takeshi Kawakami; Reto Burri; Paulina Bolívar; Arild Husby; Anna Qvarnström; Severin Uebbing; Hans Ellegren

The molecular characteristics of the pseudoautosomal region (PAR) of sex chromosomes remain elusive. Despite significant genome-sequencing efforts, the PAR of highly differentiated avian sex chromosomes remains to be identified. Here we use linkage analysis together with whole-genome re-sequencing to uncover the 630-kb PAR of an ecological model species, the collared flycatcher. The PAR contains 22 protein-coding genes and is GC rich. The genetic length is 64 cM in female meiosis, consistent with an obligate crossing-over event. Recombination is concentrated to a hotspot region, with an extreme rate of >700 cM/Mb in a 67-kb segment. We find no signatures of sexual antagonism and propose that sexual antagonism may have limited influence on PAR sequences when sex chromosomes are nearly fully differentiated and when a recombination hotspot region is located close to the PAR boundary. Our results demonstrate that a very small PAR suffices to ensure homologous recombination and proper segregation of sex chromosomes during meiosis.


Molecular Biology and Evolution | 2015

Quantitative mass spectrometry reveals partial translational regulation for dosage compensation in chicken

Severin Uebbing; Anne Konzer; Luohao Xu; Niclas Backström; Björn Brunström; Jonas Bergquist; Hans Ellegren

There is increasing evidence that dosage compensation is not a ubiquitous feature following sex chromosome evolution, especially not in organisms where females are the heterogametic sex, like in birds. Even when it occurs, compensation can be incomplete and limited to dosage-sensitive genes. However, previous work has mainly studied transcriptional regulation of sex-linked genes, which may not reflect expression at the protein level. Here, we used liquid chromatography–tandem mass spectrometry to detect and quantify expressed levels of more than 2,400 proteins in ten different tissues of male and female chicken embryos. For comparison, transcriptome sequencing was performed in the same individuals, five of each sex. The proteomic analysis revealed that dosage compensation was incomplete, with a mean male-to-female (M:F) expression ratio of Z-linked genes of 1.32 across tissues, similar to that at the RNA level (1.29). The mean Z chromosome-to-autosome expression ratio was close to 1 in males and lower than 1 in females, consistent with partly reduced Z chromosome expression in females. Although our results exclude a general mechanism for chromosome-wide dosage compensation at translation, 30% of all proteins encoded from Z-linked genes showed a significant change in the M:F ratio compared with the corresponding ratio at the RNA level. This resulted in a pattern where some genes showed balanced expression between sexes and some close to 2-fold higher expression in males. This suggests that proteomic analyses will be necessary to reveal a more complete picture of gene regulation and sex chromosome evolution.


Molecular Ecology | 2016

Divergence in gene expression within and between two closely related flycatcher species

Severin Uebbing; Axel Künstner; Hannu Mäkinen; Niclas Backström; Paulina Bolívar; Reto Burri; Ludovic Dutoit; Carina F. Mugal; Alexander Nater; Bronwen Aken; Paul Flicek; Fergal Martin; Stephen M. J. Searle; Hans Ellegren

Relatively little is known about the character of gene expression evolution as species diverge. It is for instance unclear if gene expression generally evolves in a clock‐like manner (by stabilizing selection or neutral evolution) or if there are frequent episodes of directional selection. To gain insights into the evolutionary divergence of gene expression, we sequenced and compared the transcriptomes of multiple organs from population samples of collared (Ficedula albicollis) and pied flycatchers (F. hypoleuca), two species which diverged less than one million years ago. Ordination analysis separated samples by organ rather than by species. Organs differed in their degrees of expression variance within species and expression divergence between species. Variance was negatively correlated with expression breadth and protein interactivity, suggesting that pleiotropic constraints reduce gene expression variance within species. Variance was correlated with between‐species divergence, consistent with a pattern expected from stabilizing selection and neutral evolution. Using an expression PST approach, we identified genes differentially expressed between species and found 16 genes uniquely expressed in one of the species. For one of these, DPP7, uniquely expressed in collared flycatcher, the absence of expression in pied flycatcher could be associated with a ≈20‐kb deletion including 11 of 13 exons. This study of a young vertebrate speciation model system expands our knowledge of how gene expression evolves as natural populations become reproductively isolated.


Genome Biology and Evolution | 2017

Bayesian Inference of Allele-Specific Gene Expression Indicates Abundant Cis-Regulatory Variation in Natural Flycatcher Populations

Mi Wang; Severin Uebbing; Hans Ellegren

Abstract Polymorphism in cis-regulatory sequences can lead to different levels of expression for the two alleles of a gene, providing a starting point for the evolution of gene expression. Little is known about the genome-wide abundance of genetic variation in gene regulation in natural populations but analysis of allele-specific expression (ASE) provides a means for investigating such variation. We performed RNA-seq of multiple tissues from population samples of two closely related flycatcher species and developed a Bayesian algorithm that maximizes data usage by borrowing information from the whole data set and combines several SNPs per transcript to detect ASE. Of 2,576 transcripts analyzed in collared flycatcher, ASE was detected in 185 (7.2%) and a similar frequency was seen in the pied flycatcher. Transcripts with statistically significant ASE commonly showed the major allele in >90% of the reads, reflecting that power was highest when expression was heavily biased toward one of the alleles. This would suggest that the observed frequencies of ASE likely are underestimates. The proportion of ASE transcripts varied among tissues, being lowest in testis and highest in muscle. Individuals often showed ASE of particular transcripts in more than one tissue (73.4%), consistent with a genetic basis for regulation of gene expression. The results suggest that genetic variation in regulatory sequences commonly affects gene expression in natural populations and that it provides a seedbed for phenotypic evolution via divergence in gene expression.


Molecular Ecology Resources | 2018

RPASE: Individual-based allele-specific expression detection without prior knowledge of haplotype phase

Mi Wang; Severin Uebbing; Yudi Pawitan; Douglas G. Scofield

Variation in gene expression is believed to make a significant contribution to phenotypic diversity and divergence. The analysis of allele‐specific expression (ASE) can reveal important insights into gene expression regulation. We developed a novel method called RPASE (Read‐backed Phasing‐based ASE detection) to test for genes that show ASE. With mapped RNA‐seq data from a single individual and a list of SNPs from the same individual as the only input, RPASE is capable of aggregating information across multiple dependent SNPs and producing individual‐based gene‐level tests for ASE. RPASE performs well in simulations and comparisons. We applied RPASE to multiple bird species and found a potentially rich landscape of ASE.


Archive | 2015

Allele-specific gene expression inferred by a Bayesian negative binomial approach indicates abundant cis-regulatory variation in natural flycatcher populations

Mi Wang; Severin Uebbing; Hans Ellegren

Collaboration


Dive into the Severin Uebbing's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge