Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Séverine Lamon is active.

Publication


Featured researches published by Séverine Lamon.


The Journal of Physiology | 2006

Akt signalling through GSK-3β, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy

Bertrand Léger; Romain Cartoni; Manu Praz; Séverine Lamon; Olivier Dériaz; Antoinette Crettenand; Charles Gobelet; Paul Rohmer; Michel Konzelmann; F. Luthi; Aaron P. Russell

Skeletal muscle size is tightly regulated by the synergy between anabolic and catabolic signalling pathways which, in humans, have not been well characterized. Akt has been suggested to play a pivotal role in the regulation of skeletal muscle hypertrophy and atrophy in rodents and cells. Here we measured the amount of phospho‐Akt and several of its downstream anabolic targets (glycogen synthase kinase‐3β (GSK‐3β), mTOR, p70s6k and 4E‐BP1) and catabolic targets (Foxo1, Foxo3, atrogin‐1 and MuRF1). All measurements were performed in human quadriceps muscle biopsies taken after 8 weeks of both hypertrophy‐stimulating resistance training and atrophy‐stimulating de‐training. Following resistance training a muscle hypertrophy (∼10%) and an increase in phospho‐Akt, phospho‐GSK‐3β and phospho‐mTOR protein content were observed. This was paralleled by a decrease in Foxo1 nuclear protein content. Following the de‐training period a muscle atrophy (5%), relative to the post‐training muscle size, a decrease in phospho‐Akt and GSK‐3β and an increase in Foxo1 were observed. Atrogin‐1 and MuRF1 increased after the hypertrophy and decreased after the atrophy phases. We demonstrate, for the first time in human skeletal muscle, that the regulation of Akt and its downstream signalling pathways GSK‐3β, mTOR and Foxo1 are associated with both the skeletal muscle hypertrophy and atrophy processes.


Nature | 2012

Hsp72 preserves muscle function and slows progression of severe muscular dystrophy

Stefan M. Gehrig; C van der Poel; Ta Sayer; Jonathan D. Schertzer; Darren C. Henstridge; Jarrod E Church; Séverine Lamon; Aaron P. Russell; Kay E. Davies; Mark A. Febbraio; Gordon S. Lynch

Duchenne muscular dystrophy (DMD) is a severe and progressive muscle wasting disorder caused by mutations in the dystrophin gene that result in the absence of the membrane-stabilizing protein dystrophin. Dystrophin-deficient muscle fibres are fragile and susceptible to an influx of Ca2+, which activates inflammatory and muscle degenerative pathways. At present there is no cure for DMD, and existing therapies are ineffective. Here we show that increasing the expression of intramuscular heat shock protein 72 (Hsp72) preserves muscle strength and ameliorates the dystrophic pathology in two mouse models of muscular dystrophy. Treatment with BGP-15 (a pharmacological inducer of Hsp72 currently in clinical trials for diabetes) improved muscle architecture, strength and contractile function in severely affected diaphragm muscles in mdx dystrophic mice. In dko mice, a phenocopy of DMD that results in severe spinal curvature (kyphosis), muscle weakness and premature death, BGP-15 decreased kyphosis, improved the dystrophic pathophysiology in limb and diaphragm muscles and extended lifespan. We found that the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA, the main protein responsible for the removal of intracellular Ca2+) is dysfunctional in severely affected muscles of mdx and dko mice, and that Hsp72 interacts with SERCA to preserve its function under conditions of stress, ultimately contributing to the decreased muscle degeneration seen with Hsp72 upregulation. Treatment with BGP-15 similarly increased SERCA activity in dystrophic skeletal muscles. Our results provide evidence that increasing the expression of Hsp72 in muscle (through the administration of BGP-15) has significant therapeutic potential for DMD and related conditions, either as a self-contained therapy or as an adjuvant with other potential treatments, including gene, cell and pharmacological therapies.


The Journal of Physiology | 2013

Regulation of miRNAs in human skeletal muscle following acute endurance exercise and short‐term endurance training

Aaron P. Russell; Séverine Lamon; Hanneke Boon; Shogo Wada; Isabelle Güller; Erin L. Brown; Alexander V. Chibalin; Juleen R. Zierath; Rod J. Snow; Nigel K. Stepto; Glenn D. Wadley; Takayuki Akimoto

•  The discovery of microRNAs (miRNAs) has established new mechanisms that control health, but little is known about the regulation of skeletal muscle miRNAs in response to exercise. •  This study investigated components of the miRNA biogenesis pathway (Drosha, Dicer and Exportin‐5), muscle enriched miRNAs, (miR‐1, ‐133a, ‐133b and 206), and several miRNAs dysregulated in muscle myopathies, and showed that 3 h following an acute exercise bout, Drosha, Dicer and Exportin‐5, as well as miR‐1, ‐133a, ‐133‐b and miR‐181a were all increased, while miR‐9, ‐23a, ‐23b and ‐31 were decreased. •  Short‐term training increased miR‐1 and miR‐29b, while miR‐31 remained decreased. •  Negative correlations were observed between miR‐9 and HDAC4 protein, miR‐31 and HDAC4 protein and between miR‐31 and NRF1 protein, 3 h after exercise. •  miR‐31 binding to the HDAC4 and NRF1 3′ untranslated region (UTR) reduced luciferase reporter activity. •  Exercise rapidly and transiently regulates several miRNA species potentially involved in the regulation of skeletal muscle regeneration, gene transcription and mitochondrial biogenesis.


The Journal of Physiology | 2009

Regulation of STARS and its downstream targets suggest a novel pathway involved in human skeletal muscle hypertrophy and atrophy

Séverine Lamon; Marita A. Wallace; Bertrand Léger; Aaron P. Russell

Skeletal muscle atrophy is a severe consequence of ageing, neurological disorders and chronic disease. Identifying the intracellular signalling pathways controlling changes in skeletal muscle size and function is vital for the future development of potential therapeutic interventions. Striated activator of Rho signalling (STARS), an actin‐binding protein, has been implicated in rodent cardiac hypertrophy; however its role in human skeletal muscle has not been determined. This study aimed to establish if STARS, as well as its downstream signalling targets, RhoA, myocardin‐related transcription factors A and B (MRTF‐A/B) and serum response factor (SRF), were increased and decreased respectively, in human quadriceps muscle biopsies taken after 8 weeks of both hypertrophy‐stimulating resistance training and atrophy‐stimulating de‐training. The mRNA levels of the SRF target genes involved in muscle structure, function and growth, such as α‐actin, myosin heavy chain IIa (MHCIIa) and insulin‐like growth factor‐1 (IGF‐1), were also measured. Following resistance training, STARS, MRTF‐A, MRTF‐B, SRF, α‐actin, MHCIIa and IGF‐1 mRNA, as well as RhoA and nuclear SRF protein levels were all significantly increased by between 1.25‐ and 3.6‐fold. Following the de‐training period all measured targets, except for RhoA, which remained elevated, returned to base‐line. Our results show that the STARS signalling pathway is responsive to changes in skeletal muscle loading and appears to play a role in both human skeletal muscle hypertrophy and atrophy.


Frontiers in Physiology | 2013

MicroRNAs in skeletal muscle and their regulation with exercise, ageing, and disease

Evelyn Zacharewicz; Séverine Lamon; Aaron P. Russell

Skeletal muscle makes up approximately 40% of the total body mass, providing structural support and enabling the body to maintain posture, to control motor movements and to store energy. It therefore plays a vital role in whole body metabolism. Skeletal muscle displays remarkable plasticity and is able to alter its size, structure and function in response to various stimuli; an essential quality for healthy living across the lifespan. Exercise is an important stimulator of extracellular and intracellular stress signals that promote positive adaptations in skeletal muscle. These adaptations are controlled by changes in gene transcription and protein translation, with many of these molecules identified as potential therapeutic targets to pharmacologically improve muscle quality in patient groups too ill to exercise. MicroRNAs (miRNAs) are recently identified regulators of numerous gene networks and pathways and mainly exert their effect by binding to their target messenger RNAs (mRNAs), resulting in mRNA degradation or preventing protein translation. The role of exercise as a regulatory stimulus of skeletal muscle miRNAs is now starting to be investigated. This review highlights our current understanding of the regulation of skeletal muscle miRNAs with exercise and disease as well as how they may control skeletal muscle health.


Journal of Chromatography A | 2010

Rapid affinity purification of erythropoietin from biological samples using disposable monoliths

Maria Lönnberg; Yvette Dehnes; Malin Drevin; Mats Garle; Séverine Lamon; Nicolas Leuenberger; Trikien Quach; Jan Carlsson

Identification of post-translational modifications of proteins in biological samples often requires access to preanalytical purification and concentration methods. In the purification step high or low molecular weight substances can be removed by size exclusion filters, and high abundant proteins can be removed, or low abundant proteins can be enriched, by specific capturing tools. In this paper is described the experience and results obtained with a recently emerged and easy-to-use affinity purification kit for enrichment of the low amounts of EPO found in urine and plasma specimens. The kit can be used as a pre-step in the EPO doping control procedure, as an alternative to the commonly used ultrafiltration, for detecting aberrantly glycosylated isoforms. The commercially available affinity purification kit contains small disposable anti-EPO monolith columns (6 μL volume, Ø7 mm, length 0.15 mm) together with all required buffers. A 24-channel vacuum manifold was used for simultaneous processing of samples. The column concentrated EPO from 20 mL urine down to 55 μL eluate with a concentration factor of 240 times, while roughly 99.7% of non-relevant urine proteins were removed. The recoveries of Neorecormon (epoetin beta), and the EPO analogues Aranesp and Mircera applied to buffer were high, 76%, 67% and 57%, respectively. The recovery of endogenous EPO from human urine was 65%. High recoveries were also obtained when purifying human, mouse and equine EPO from serum, and human EPO from cerebrospinal fluid. Evaluation with the accredited EPO doping control method based on isoelectric focusing (IEF) showed that the affinity purification procedure did not change the isoform distribution for rhEPO, Aranesp, Mircera or endogenous EPO. The kit should be particularly useful for applications in which it is essential to avoid carry-over effects, a problem commonly encountered with conventional particle-based affinity columns. The encouraging results with EPO propose that similar affinity monoliths, with the appropriate antibodies, should constitute useful tools for general applications in sample preparation, not only for doping control of EPO and other hormones such as growth hormone and insulin but also for the study of post-translational modifications of other low abundance proteins in biological and clinical research, and for sample preparation prior to in vitro diagnostics.


PLOS ONE | 2014

Identification of MicroRNAs Linked to Regulators of Muscle Protein Synthesis and Regeneration in Young and Old Skeletal Muscle

Evelyn Zacharewicz; Paul A. Della Gatta; John V. Reynolds; Andrew Garnham; Tamsyn M. Crowley; Aaron P. Russell; Séverine Lamon

Background Over the course of ageing there is a natural and progressive loss of skeletal muscle mass. The onset and progression of age-related muscle wasting is associated with an attenuated activation of Akt-mTOR signalling and muscle protein synthesis in response to anabolic stimuli such as resistance exercise. MicroRNAs (miRNAs) are novel and important post-transcriptional regulators of numerous cellular processes. The role of miRNAs in the regulation of muscle protein synthesis following resistance exercise is poorly understood. This study investigated the changes in skeletal muscle miRNA expression following an acute bout of resistance exercise in young and old subjects with a focus on the miRNA species predicted to target Akt-mTOR signalling. Results Ten young (24.2±0.9 years) and 10 old (66.6±1.1 years) males completed an acute resistance exercise bout known to maximise muscle protein synthesis, with muscle biopsies collected before and 2 hours after exercise. We screened the expression of 754 miRNAs in the muscle biopsies and found 26 miRNAs to be regulated with age, exercise or a combination of both factors. Nine of these miRNAs are highly predicted to regulate targets within the Akt-mTOR signalling pathway and 5 miRNAs have validated binding sites within the 3′ UTRs of several members of the Akt-mTOR signalling pathway. The miR-99/100 family of miRNAs notably emerged as potentially important regulators of skeletal muscle mass in young and old subjects. Conclusion This study has identified several miRNAs that were regulated with age or with a single bout of resistance exercise. Some of these miRNAs were predicted to influence Akt-mTOR signalling, and therefore potentially skeletal muscle mass. These miRNAs should be considered as candidate targets for in vivo modulation.


Free Radical Biology and Medicine | 2015

Vitamin C and E supplementation prevents some of the cellular adaptations to endurance-training in humans

Dale Morrison; Jed Hughes; Paul A. Della Gatta; Shaun Mason; Séverine Lamon; Aaron P. Russell; Glenn D. Wadley

BACKGROUND It is clear that reactive oxygen species (ROS) produced during skeletal muscle contraction have a regulatory role in skeletal muscle adaptation to endurance exercise. However, there is much controversy in the literature regarding whether attenuation of ROS by antioxidant supplementation can prevent these cellular adaptations. Therefore, the aim of this study was to determine whether vitamin C and E supplementation attenuates performance and cellular adaptations following acute endurance exercise and endurance training. METHODS A double-blinded, placebo-controlled randomized control trial was conducted in eleven healthy young males. Participants were matched for peak oxygen consumption (VO 2peak) and randomly allocated to placebo or antioxidant (vitamin C (2 × 500 mg/day) and E (400 IU/day)) groups. Following a four-week supplement loading period, participants completed acute exercise (10 × 4 min cycling at 90% VO 2peak, 2 min active recovery). Vastus lateralis muscle samples were collected pre-, immediately-post- and 3h-post-exercise. Participants then completed four weeks of training (3 days/week) using the aforementioned exercise protocol while continuing supplementation. Following exercise training, participants again completed an acute exercise bout with muscle biopsies. RESULTS Acute exercise tended to increase skeletal muscle oxidative stress as measured by oxidized glutathione (GSSG) (P=0.058) and F2-isoprostanes (P=0.056), with no significant effect of supplementation. Acute exercise significantly increased mRNA levels of peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), mitochondrial transcription factor A (TFAM) and PGC related coactivator (PRC), with no effect of supplementation. Following endurance training, supplementation did not prevent significantly increased VO 2peak, skeletal muscle levels of citrate synthase activity or mRNA or protein abundance of cytochrome oxidase subunit 4 (COX IV) (P<0.05). However, following training, vitamin C and E supplementation significantly attenuated increased skeletal muscle superoxide dismutase (SOD) activity and protein abundance of SOD2 and TFAM. CONCLUSION Following acute exercise, supplementation with vitamin C and E did not attenuate skeletal muscle oxidative stress or increased gene expression of mitochondrial biogenesis markers. However, supplementation attenuated some (SOD, TFAM) of the increased skeletal muscle adaptations following training in healthy young men.


Journal of Pharmaceutical and Biomedical Analysis | 2009

A high-throughput test to detect C.E.R.A. doping in blood

Séverine Lamon; Sylvain Giraud; Léonie Egli; Jessica Smolander; Michael Jarsch; Kay-Gunnar Stubenrauch; Alice Hellwig; Martial Saugy; Neil Robinson

C.E.R.A., a continuous erythropoietin receptor activator, is a new third-generation erythropoiesis-stimulating agent (ESA) that has recently been linked with abuse in endurance sports. In order to combat this new form of doping, we examined an enzyme-linked immunosorbent assay (ELISA) designed to detect the presence of C.E.R.A. in serum samples. The performance of the assay was evaluated using a pilot excretion study that involved six subjects receiving C.E.R.A. Validation data demonstrated an excellent reproducibility and ensured the applicability of the assay for anti-doping purposes. To maximize the chances of detecting the drug in serum samples, we propose the use of this specific ELISA test as a high-throughput screening method, combined with a classic isoelectric focusing test as a confirmatory assay. This strategy should make C.E.R.A. abuse relatively easy to detect, thereby preventing the future use of this drug as a doping agent.


Clinical Journal of Sport Medicine | 2009

Effects of exercise on the isoelectric patterns of erythropoietin

Séverine Lamon; Laurent Martin; Neil Robinson; Martial Saugy; Jacques de Ceaurriz; Françoise Lasne

Objectives:Recombinant erythropoietin has a strong impact on aerobic power and is therefore one of the most potent doping agents in endurance sports. The anti-doping control of this synthetic hormone relies on the detection, in the urine, of its isoelectric pattern, which differs from that of the corresponding natural hormone, the latter being typically more acidic than the former. However, a small number of natural urinary patterns, referred to as “atypical patterns,” are less acidic than the dominant form. Based on anecdotal evidence, the occurrence of such patterns seems to be related to particular strenuous exercises. This study aimed to demonstrate this relation using a strenuous exercise protocol. Design:Seven athletes took part in a training protocol including a series of supramaximal short-duration exercises. Urine and blood samples were collected throughout the protocols. Settings:World Cycling Center, Aigle, Switzerland, and research laboratories. Participants:Seven top-level athletes (cyclists) were involved in this study. Main Outcome Measures:Erythropoietin (EPO) isoelectric patterns were obtained by submitting blood and urine samples to isoelectric focusing. Additional protein dosages were performed. Results:Supramaximal short-duration exercises induced the transformation of typical urinary natural EPO patterns into atypical ones. None of the obtained atypical patterns fulfilled the 3 criteria mandatory for reporting an adverse analytical finding. Serum EPO patterns were not affected by the exercises that caused the transformation of urinary patterns. Conclusion:An exercise-induced transient renal dysfunction is proposed as a hypothetic explanation for these observations that rely on parallel investigations of proteinuria in the same samples.

Collaboration


Dive into the Séverine Lamon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge