Séverine Michel
Institut national de la recherche agronomique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Séverine Michel.
Plant Physiology | 2005
Christophe Délye; Xiao-Qi Zhang; Séverine Michel; Annick Matejicek; Stephen B. Powles
In grasses, residues homologous to residues Ile-1,781 and Ile-2,041 in the carboxyl-transferase (CT) domain of the chloroplastic acetyl-coenzyme A (CoA) carboxylase (ACCase) from the grass weed black-grass (Alopecurus myosuroides [Huds.]) are critical determinants for sensitivity to two classes of ACCase inhibitors, aryloxyphenoxypropionates (APPs) and cyclohexanediones. Using natural mutants of black-grass, we demonstrated through a molecular, biological, and biochemical approach that residues Trp-2,027, Asp-2,078, and Gly-2,096 are also involved in sensitivity to ACCase inhibitors. In addition, residues Trp-2,027 and Asp-2,078 are very likely involved in CT activity. Using three-dimensional modeling, we found that the side chains of the five residues are adjacent, located at the surface of the inside of the cavity of the CT active site, in the vicinity of the binding site for APPs. Residues 1,781 and 2,078 are involved in sensitivity to both APPs and cyclohexanediones, whereas residues 2,027, 2,041, and 2,096 are involved in sensitivity to APPs only. This suggests that the binding sites for these two classes of compounds are overlapping, although distinct. Comparison of three-dimensional models for black-grass wild-type and mutant CTs and for CTs from organisms with contrasted sensitivity to ACCase inhibitors suggested that inhibitors fitting into the cavity of the CT active site of the chloroplastic ACCase from grasses to reach their active sites may be tight. The three-dimensional shape of this cavity is thus likely of high importance for the efficacy of ACCase inhibitors.
Plant Physiology | 2003
Christophe Délye; Xiao-Qi Zhang; Claire Chalopin; Séverine Michel; Stephen B. Powles
A 3,300-bp DNA fragment encoding the carboxyl-transferase domain of the multidomain, chloroplastic acetyl-coenzyme A carboxylase (ACCase) was sequenced in aryloxyphenoxypropionate (APP)-resistant and -sensitive Alopecurus myosuroides (Huds.). No resistant plant contained an Ile-1,781-Leu substitution, previously shown to confer resistance to APPs and cyclohexanediones (CHDs). Instead, an Ile-2,041-Asn substitution was found in resistant plants. Phylogenetic analysis of the sequences revealed that Asn-2,041 ACCase alleles derived from several distinct origins. Allele-specific polymerase chain reaction associated the presence of Asn-2,041 with seedling resistance to APPs but not to CHDs. ACCase enzyme assays confirmed that Asn-2,041 ACCase activity was moderately resistant to CHDs but highly resistant to APPs. Thus, the Ile-2,041-Asn substitution, which is located outside a domain previously shown to control sensitivity to APPs and CHDs in wheat (Triticum aestivum), is a direct cause of resistance to APPs only. In known multidomain ACCases, the position corresponding to the Ile/Asn-2,041 residue in A. myosuroides is occupied by an Ile or a Val residue. In Lolium rigidum (Gaud.), we found Ile-Asn and Ile-Val substitutions. The Ile-Val change did not confer resistance to the APP clodinafop, whereas the Ile-Asn change did. The position and the particular substitution at this position are of importance for sensitivity to APPs.
Pest Management Science | 2008
Christophe Délye; Annick Matejicek; Séverine Michel
BACKGROUND Target-site-based resistance to acetyl-CoA carboxylase (ACCase) inhibitors in Alopecurus myosuroides Huds. is essentially due to five substitutions (Isoleucine-1781-Leucine, Tryptophan-2027-Cysteine, Isoleucine-2041-Asparagine, Aspartate-2078-Glycine, Glycine-2096-Alanine). Recent studies suggested that cross-resistance patterns associated with each mutation using a seed-based bioassay may not accurately reflect field resistance. The authors aimed to connect the presence of mutant ACCase isoform(s) in A. myosuroides with resistance to five ACCase inhibitors (fenoxaprop, clodinafop, haloxyfop, cycloxydim, clethodim) sprayed at the recommended field rate. RESULTS Results from spraying experiments and from seed-based bioassays were consistent for all mutant isoforms except the most widespread, Leucine-1781. In spraying experiments, Leucine-1781 ACCase conferred resistance to clodinafop and haloxyfop. Some plants containing Leucine-1781 or Alanine-2096 ACCase, but not all, were also resistant to clethodim. CONCLUSION Leucine-1781, Cysteine-2027, Asparagine-2041 and Alanine-2096 ACCases confer resistance to fenoxaprop, clodinafop and haloxyfop at field rates. Leucine-1781 ACCase also confers resistance to cycloxydim at field rate. Glycine-2078 ACCase confers resistance to all five herbicides at field rates. Only Glycine-2078 ACCase confers clethodim resistance under optimal application conditions. It may be that Leucine-1781 and Alanine-2096 ACCases may also confer resistance to clethodim in the field if the conditions are not optimal for herbicide efficacy, or at reduced clethodim field rates.
Plant Physiology | 2004
Christophe Délye; Yosra Menchari; Séverine Michel; Henri Darmency
We investigated the molecular bases for resistance to several classes of herbicides that bind tubulins in green foxtail (Setaria viridis L. Beauv.). We identified two α- and two β-tubulin genes in green foxtail. Sequence comparison between resistant and sensitive plants revealed two mutations, a leucine-to-phenylalanine change at position 136 and a threonine-to-isoleucine change at position 239, in the gene encoding α2-tubulin. Association of mutation at position 239 with herbicide resistance was demonstrated using near-isogenic lines derived from interspecific pairings between green foxtail and foxtail millet (Setaria italica L. Beauv.), and herbicide sensitivity bioassays combined with allele-specific PCR-mediated genotyping. Association of mutation at position 136 with herbicide resistance was demonstrated using herbicide sensitivity bioassays combined with allele-specific PCR-mediated genotyping. Both mutations were associated with recessive cross resistance to dinitroanilines and benzoic acids, no change in sensitivity to benzamides, and hypersensitivity to carbamates. Using three-dimensional modeling, we found that the two mutations are adjacent and located into a region involved in tubulin dimer-dimer contact. Comparison of three-dimensional α-tubulin models for organisms with contrasted sensitivity to tubulin-binding herbicides enabled us to propose that residue 253 and the vicinity of the side chain of residue 251 are critical determinants for the differences in herbicide sensitivity observed between organisms, and that positions 16, 24, 136, 239, 252, and 268 are involved in modulating sensitivity to these herbicides.
Annals of Botany | 2013
Christophe Délye; Yosra Menchari; Séverine Michel; Emilie Cadet; Valérie Le Corre
BACKGROUND AND AIMS Selective pressures exerted by agriculture on populations of arable weeds foster the evolution of adaptive traits. Germination and emergence dynamics and herbicide resistance are key adaptive traits. Herbicide resistance alleles can have pleiotropic effects on a weeds life cycle. This study investigated the pleiotropic effects of three acetyl-coenzyme A carboxylase (ACCase) alleles endowing herbicide resistance on the seed-to-plant part of the life cycle of the grass weed Alopecurus myosuroides. METHODS In each of two series of experiments, A. myosuroides populations with homogenized genetic backgrounds and segregating for Leu1781, Asn2041 or Gly2078 ACCase mutations which arose independently were used to compare germination dynamics, survival in the soil and seedling pre-emergence growth among seeds containing wild-type, heterozygous and homozygous mutant ACCase embryos. KEY RESULTS Asn2041 ACCase caused no significant effects. Gly2078 ACCase major effects were a co-dominant acceleration in seed germination (1·25- and 1·10-fold decrease in the time to reach 50 % germination (T50) for homozygous and heterozygous mutant embryos, respectively). Segregation distortion against homozygous mutant embryos or a co-dominant increase in fatal germination was observed in one series of experiments. Leu1781 ACCase major effects were a co-dominant delay in seed germination (1·41- and 1·22-fold increase in T50 for homozygous and heterozygous mutant embryos, respectively) associated with a substantial co-dominant decrease in fatal germination. CONCLUSIONS Under current agricultural systems, plants carrying Leu1781 or Gly2078 ACCase have a fitness advantage conferred by herbicide resistance that is enhanced or counterbalanced, respectively, by direct pleiotropic effects on the plant phenology. Pleiotropic effects associated with mutations endowing herbicide resistance undoubtedly play a significant role in the evolutionary dynamics of herbicide resistance in weed populations. Mutant ACCase alleles should also prove useful to investigate the role played by seed storage lipids in the control of seed dormancy and germination.
Pest Management Science | 2016
Christophe Délye; Romain Causse; Séverine Michel
BACKGROUND Following control failure by herbicides inhibiting acetolactate synthase (ALS) in French wheat fields and vineyards, we aimed to confirm resistance evolution and investigate the evolutionary origin and spread of resistance in the tetraploid species Senecio vulgaris (common groundsel), a widespread, highly mobile weed. RESULTS Sequencing of two ALS homeologues in S. vulgaris enabled the first identification and characterisation of ALS-based resistance in this species. Cross-resistance patterns associated with Leu-197 and Ser-197 ALS1 were established using eight herbicides. Sequencing and genotyping showed that ALS-based resistance evolved by multiple, independent appearances of mutant ALS1 and ALS2 alleles followed by spread. Spread of a mutant ALS1 allele issued from one particular appearance event was observed over 60 km. Independent resistance appearance events and easy seed dispersion are the most likely reasons for populations of S. vulgaris containing different mutant ALS alleles. Accumulation of different alleles probably due to sexual reproduction was observed in the same plant. CONCLUSION Mutant ALS alleles and possibly other mechanisms cause resistance to ALS inhibitors in S. vulgaris. Management strategies should aim at limiting S. vulgaris establishment and seed set. Considering the mobility of this species, control coordination at a regional level is clearly necessary if resistance spread is to be contained.
International Journal of Molecular Sciences | 2012
Vaya Kati; Valérie Le Corre; Séverine Michel; Lydia Jaffrelo; Charles Poncet; Christophe Délye
Papaver rhoeas, an annual plant species in the Papaveraceae family, is part of the biodiversity of agricultural ecosystems and also a noxious agronomic weed. We developed microsatellite markers to study the genetic diversity of P. rhoeas, using an enriched microsatellite library coupled with 454 next-generation sequencing. A total of 13,825 sequences were obtained that yielded 1795 microsatellite loci. After discarding loci with less than six repeats of the microsatellite motif, automated primer design was successful for 598 loci. We tested 74 of these loci for amplification with a total of 97 primer pairs. Thirty loci passed our tests and were subsequently tested for polymorphism using 384 P. rhoeas plants originating from 12 populations from France. Of the 30 loci, 11 showed reliable polymorphism not affected by the presence of null alleles. The number of alleles and the expected heterozygosity ranged from 3 to 7.4 and from 0.27 to 0.73, respectively. A low but significant genetic differentiation among populations was observed (FST = 0.04; p < 0.001). The 11 validated polymorphic microsatellite markers developed in this work will be useful in studies of genetic diversity and population structure of P. rhoeas, assisting in designing management strategies for the control or the conservation of this species.
Pest Management Science | 2015
Christophe Délye; Romain Causse; Véronique Gautier; Charles Poncet; Séverine Michel
BACKGROUND Next-generation sequencing (NGS) technologies offer tremendous possibilities for accurate detection of mutations endowing pesticide resistance, yet their use for this purpose has not emerged in crop protection. This study aims at promoting NGS use for pesticide resistance diagnosis. It describes a simple procedure accessible to virtually any scientist and implementing freely accessible programs for the analysis of NGS data. RESULTS Three PCR amplicons encompassing seven codons of the acetolactate-synthase gene crucial for herbicide resistance were sequenced using non-quantified pools of crude DNA extracts from 40 plants in each of 28 field populations of barnyard grass, a polyploid weed. A total of 63,959 quality NGS sequence runs were obtained using the 454 technology. Three herbicide-resistance-endowing mutations (Pro-197-Ser, Pro-197-Leu and/or Trp-574-Leu) were identified in seven populations. The NGS results were confirmed by individual plant Sanger sequencing. CONCLUSION This work demonstrated the feasibility of NGS-based detection of pesticide resistance, and the advantages of NGS compared with other molecular biology techniques for analysing large numbers of individuals. NGS-based resistance diagnosis has the potential to play a substantial role in monitoring resistance, maintaining pesticide efficacy and optimising pesticide applications.
New Phytologist | 2010
Christophe Délye; Séverine Michel; Aurélie Bérard; Bruno Chauvel; Dominique Brunel; Jean-Philippe Guillemin; Fabrice Dessaint; Valérie Le Corre
Weed Research | 2007
Christophe Délye; Yosra Menchari; Jean-Philippe Guillemin; Annick Matejicek; Séverine Michel; Christine Camilleri; Bruno Chauvel