Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dominique Brunel is active.

Publication


Featured researches published by Dominique Brunel.


Science | 2014

Early allopolyploid evolution in the post-neolithic Brassica napus oilseed genome

Boulos Chalhoub; Shengyi Liu; Isobel A. P. Parkin; Haibao Tang; Xiyin Wang; Julien Chiquet; Harry Belcram; Chaobo Tong; Birgit Samans; Margot Corréa; Corinne Da Silva; Jérémy Just; Cyril Falentin; Chu Shin Koh; Isabelle Le Clainche; Maria Bernard; Pascal Bento; Benjamin Noel; Karine Labadie; Adriana Alberti; Mathieu Charles; Dominique Arnaud; Hui Guo; Christian Daviaud; Salman Alamery; Kamel Jabbari; Meixia Zhao; Patrick P. Edger; Houda Chelaifa; David Tack

The genomic origins of rape oilseed Many domesticated plants arose through the meeting of multiple genomes through hybridization and genome doubling, known as polyploidy. Chalhoub et al. sequenced the polyploid genome of Brassica napus, which originated from a recent combination of two distinct genomes approximately 7500 years ago and gave rise to the crops of rape oilseed (canola), kale, and rutabaga. B. napus has undergone multiple events affecting differently sized genetic regions where a gene from one progenitor species has been converted to the copy from a second progenitor species. Some of these gene conversion events appear to have been selected by humans as part of the process of domestication and crop improvement. Science, this issue p. 950 The polyploid genome of oilseed rape exhibits evolution through homologous gene conversion. Oilseed rape (Brassica napus L.) was formed ~7500 years ago by hybridization between B. rapa and B. oleracea, followed by chromosome doubling, a process known as allopolyploidy. Together with more ancient polyploidizations, this conferred an aggregate 72× genome multiplication since the origin of angiosperms and high gene content. We examined the B. napus genome and the consequences of its recent duplication. The constituent An and Cn subgenomes are engaged in subtle structural, functional, and epigenetic cross-talk, with abundant homeologous exchanges. Incipient gene loss and expression divergence have begun. Selection in B. napus oilseed types has accelerated the loss of glucosinolate genes, while preserving expansion of oil biosynthesis genes. These processes provide insights into allopolyploid evolution and its relationship with crop domestication and improvement.


Nature Genetics | 2011

The genome of Theobroma cacao

Xavier Argout; Jérôme Salse; Jean-Marc Aury; Mark J. Guiltinan; Gaëtan Droc; Jérôme Gouzy; Mathilde Allègre; Cristian Chaparro; Thierry Legavre; Siela N. Maximova; Michael Abrouk; Florent Murat; Olivier Fouet; Julie Poulain; Manuel Ruiz; Yolande Roguet; Maguy Rodier-Goud; Jose Fernandes Barbosa-Neto; François Sabot; Dave Kudrna; Jetty S. S. Ammiraju; Stephan C. Schuster; John E. Carlson; Erika Sallet; Thomas Schiex; Anne Dievart; Melissa Kramer; Laura Gelley; Zi Shi; Aurélie Bérard

We sequenced and assembled the draft genome of Theobroma cacao, an economically important tropical-fruit tree crop that is the source of chocolate. This assembly corresponds to 76% of the estimated genome size and contains almost all previously described genes, with 82% of these genes anchored on the 10 T. cacao chromosomes. Analysis of this sequence information highlighted specific expansion of some gene families during evolution, for example, flavonoid-related genes. It also provides a major source of candidate genes for T. cacao improvement. Based on the inferred paleohistory of the T. cacao genome, we propose an evolutionary scenario whereby the ten T. cacao chromosomes were shaped from an ancestor through eleven chromosome fusions.


The Plant Cell | 2010

Megabase Level Sequencing Reveals Contrasted Organization and Evolution Patterns of the Wheat Gene and Transposable Element Spaces

Frédéric Choulet; Thomas Wicker; Camille Rustenholz; Etienne Paux; Jérôme Salse; Philippe Leroy; Stéphane Schlub; Marie Christine Le Paslier; Ghislaine Magdelenat; Catherine Gonthier; Arnaud Couloux; Hikmet Budak; James Breen; Michael O. Pumphrey; Sixin Liu; Xiuying Kong; Jizeng Jia; Marta Gut; Dominique Brunel; James A. Anderson; Bikram S. Gill; R. Appels; Beat Keller; Catherine Feuillet

This article describes the molecular analysis of large contiguous sequences produced from the bread wheat genome. It provides novel insights into the number, distribution, and density of genes along chromosome 3B and reveals an unexpectedly high amount of noncollinear genes compared to model grass genomes. To improve our understanding of the organization and evolution of the wheat (Triticum aestivum) genome, we sequenced and annotated 13-Mb contigs (18.2 Mb) originating from different regions of its largest chromosome, 3B (1 Gb), and produced a 2x chromosome survey by shotgun Illumina/Solexa sequencing. All regions carried genes irrespective of their chromosomal location. However, gene distribution was not random, with 75% of them clustered into small islands containing three genes on average. A twofold increase of gene density was observed toward the telomeres likely due to high tandem and interchromosomal duplication events. A total of 3222 transposable elements were identified, including 800 new families. Most of them are complete but showed a highly nested structure spread over distances as large as 200 kb. A succession of amplification waves involving different transposable element families led to contrasted sequence compositions between the proximal and distal regions. Finally, with an estimate of 50,000 genes per diploid genome, our data suggest that wheat may have a higher gene number than other cereals. Indeed, comparisons with rice (Oryza sativa) and Brachypodium revealed that a high number of additional noncollinear genes are interspersed within a highly conserved ancestral grass gene backbone, supporting the idea of an accelerated evolution in the Triticeae lineages.


Genetics | 2008

Quantitative Trait Loci Mapping in Five New Large Recombinant Inbred Line Populations of Arabidopsis thaliana Genotyped With Consensus Single-Nucleotide Polymorphism Markers

Matthieu Simon; Olivier Loudet; Stéphanie Durand; Aurélie Bérard; Dominique Brunel; François-Xavier Sennesal; Mylène Durand-Tardif; Georges Pelletier; Christine Camilleri

Quantitative approaches conducted in a single mapping population are limited by the extent of genetic variation distinguishing the parental genotypes. To overcome this limitation and allow a more complete dissection of the genetic architecture of complex traits, we built an integrated set of 15 new large Arabidopsis thaliana recombinant inbred line (RIL) populations optimized for quantitative trait loci (QTL) mapping, having Columbia as a common parent crossed to distant accessions. Here we present 5 of these populations that were validated by investigating three traits: flowering time, rosette size, and seed production as an estimate of fitness. The large number of RILs in each population (between 319 and 377 lines) and the high density of evenly spaced genetic markers scored ensure high power and precision in QTL mapping even under a minimal phenotyping framework. Moreover, the use of common markers across the different maps allows a direct comparison of the QTL detected within the different RIL sets. In addition, we show that following a selective phenotyping strategy by performing QTL analyses on genotypically chosen subsets of 164 RILs (core populations) does not impair the power of detection of QTL with phenotypic contributions >7%.


Theoretical and Applied Genetics | 1998

THE TWO GENES HOMOLOGOUS TO ARABIDOPSIS FAE1 CO-SEGREGATE WITH THE TWO LOCI GOVERNING ERUCIC ACID CONTENT IN BRASSICA NAPUS

M. Fourmann; Pierre Barret; M. Renard; Georges Pelletier; Régine Delourme; Dominique Brunel

Abstract KCS (β-keto-acyl-CoA synthase) has been proposed as a candidate gene for explaining the erucic acid level in rapeseed. Degenerate PCR primers corresponding to the FAE1 gene have been designed. Two B. napus genes BN-FAE1.1 and BN-FAE1.2, corresponding to the parental species B. rapa and B. oleracea FAE1 genes, were amplified. Polymorphism was revealed for these two genes by acrylamide electrophoresis of the amplification products. These two genes could then be mapped and a co-segregation of these genes with the E1 and E2 loci controlling erucic acid content was found. Furthermore, mutations observed for one of these genes could explain part of the low erucic trait of the three LEAR types used in this study.


Genetics | 2012

Maximizing the Reliability of Genomic Selection by Optimizing the Calibration Set of Reference Individuals: Comparison of Methods in Two Diverse Groups of Maize Inbreds ( Zea mays L.)

Renaud Rincent; Denis Laloë; Stéphane D. Nicolas; Thomas Altmann; Dominique Brunel; P. Revilla; Víctor M. Rodríguez; Jesús Moreno-González; Albrecht E. Melchinger; Eva Bauer; C-C. Schoen; Nina Meyer; Catherine Giauffret; Cyril Bauland; Philippe Jamin; Jacques Laborde; Hervé Monod; Pascal Flament; Alain Charcosset; Laurence Moreau

Genomic selection refers to the use of genotypic information for predicting breeding values of selection candidates. A prediction formula is calibrated with the genotypes and phenotypes of reference individuals constituting the calibration set. The size and the composition of this set are essential parameters affecting the prediction reliabilities. The objective of this study was to maximize reliabilities by optimizing the calibration set. Different criteria based on the diversity or on the prediction error variance (PEV) derived from the realized additive relationship matrix–best linear unbiased predictions model (RA–BLUP) were used to select the reference individuals. For the latter, we considered the mean of the PEV of the contrasts between each selection candidate and the mean of the population (PEVmean) and the mean of the expected reliabilities of the same contrasts (CDmean). These criteria were tested with phenotypic data collected on two diversity panels of maize (Zea mays L.) genotyped with a 50k SNPs array. In the two panels, samples chosen based on CDmean gave higher reliabilities than random samples for various calibration set sizes. CDmean also appeared superior to PEVmean, which can be explained by the fact that it takes into account the reduction of variance due to the relatedness between individuals. Selected samples were close to optimality for a wide range of trait heritabilities, which suggests that the strategy presented here can efficiently sample subsets in panels of inbred lines. A script to optimize reference samples based on CDmean is available on request.


Plant Physiology | 2011

Increase in Tomato Locule Number Is Controlled by Two Single-Nucleotide Polymorphisms Located Near WUSCHEL

Stéphane Muños; Nicolas Ranc; Emmanuel Botton; Aurélie Bérard; Sophie Rolland; Philippe Duffé; Yolande Carretero; Marie-Christine Le Paslier; Corinne Delalande; Mondher Bouzayen; Dominique Brunel; Mathilde Causse

In tomato (Solanum lycopersicum) fruit, the number of locules (cavities containing seeds that are derived from carpels) varies from two to up to 10 or more. Locule number affects fruit shape and size and is controlled by several quantitative trait loci (QTLs). The large majority of the phenotypic variation is explained by two of these QTLs, fasciated (fas) and locule number (lc), that interact epistatically with one another. FAS has been cloned, and mutations in the gene are described as key factors leading to the increase in fruit size in modern varieties. Here, we report the map-based cloning of lc. The lc QTL includes a 1,600-bp region that is located 1,080 bp from the 3′ end of WUSCHEL, which encodes a homeodomain protein that regulates stem cell fate in plants. The molecular evolution of lc showed a reduction of diversity in cultivated accessions with the exception of two single-nucleotide polymorphisms. These two single-nucleotide polymorphisms were shown to be responsible for the increase in locule number. An evolutionary model of locule number is proposed herein, suggesting that the fas mutation appeared after the mutation in the lc locus to confer the extreme high-locule-number phenotype.


Molecular Ecology | 2006

Evidence for a large-scale population structure among accessions of Arabidopsis thaliana : possible causes and consequences for the distribution of linkage disequilibrium

Marie-France Ostrowski; Jacques David; Sylvain Santoni; Heather McKhann; Xavier Reboud; Valérie Le Corre; Christine Camilleri; Dominique Brunel; David Bouchez; Benoit Faure; Thomas Bataillon

The existence of a large‐scale population structure was investigated in Arabidopsis thaliana by studying patterns of polymorphism in a set of 71 European accessions. We used sequence polymorphism surveyed in 10 fragments of ∼600 nucleotides and a set of nine microsatellite markers. Population structure was investigated using a model‐based inference framework. Among the accessions studied, the presence of four groups was inferred using genetic data, without using prior information on the geographical origin of the accessions. Significant genetic isolation by geographical distance was detected at the group level, together with a geographical gradient in allelic richness across groups. These results are discussed with respect to the previously proposed scenario of postglacial colonization of Europe from putative glacial refugia. Finally, the contribution of the inferred structure to linkage disequilibrium among 171 pairs of essentially unlinked markers was also investigated. Linkage disequilibrium analysis revealed that significant associations detected in the whole sample were mainly due to genetic differentiation among the inferred groups. We discuss the implication of this finding for future association studies in A. thaliana.


BMC Genomics | 2012

SNP mining in C. clementina BAC end sequences; transferability in the Citrus genus (Rutaceae), phylogenetic inferences and perspectives for genetic mapping

Patrick Ollitrault; Javier Terol; Andres Garcia-Lor; Aurélie Bérard; Aurélie Chauveau; Yann Froelicher; Caroline Belzile; Raphaël Morillon; Luis Navarro; Dominique Brunel; Manuel Talon

BackgroundWith the increasing availability of EST databases and whole genome sequences, SNPs have become the most abundant and powerful polymorphic markers. However, SNP chip data generally suffers from ascertainment biases caused by the SNP discovery and selection process in which a small number of individuals are used as discovery panels. The ongoing International Citrus Genome Consortium sequencing project of the highly heterozygous Clementine and sweet orange genomes will soon result in the release of several hundred thousand SNPs. The primary goals of this study were: (i) to estimate the transferability within the genus Citrus of SNPs discovered from Clementine BACend sequencing (BES), (ii) to estimate bias associated with the very narrow discovery panel, and (iii) to evaluate the usefulness of the Clementine-derived SNP markers for diversity analysis and comparative mapping studies between the different cultivated Citrus species.ResultsFifty-four accessions covering the main Citrus species and 52 interspecific hybrids between pummelo and Clementine were genotyped on a GoldenGate array platform using 1,457 SNPs mined from Clementine BES and 37 SNPs identified between and within C. maxima, C. medica, C. reticulata and C. micrantha. Consistent results were obtained from 622 SNP loci. Of these markers, 116 displayed incomplete transferability primarily in C. medica, C. maxima and wild Citrus species. The two primary biases associated with the SNP mining in Clementine were an overestimation of the C. reticulata diversity and an underestimation of the interspecific differentiation. However, the genetic stratification of the gene pool was high, with very frequent significant linkage disequilibrium. Furthermore, the shared intraspecific polymorphism and accession heterozygosity were generally enough to perform interspecific comparative genetic mapping.ConclusionsA set of 622 SNP markers providing consistent results was selected. Of the markers mined from Clementine, 80.5% were successfully transferred to the whole Citrus gene pool. Despite the ascertainment biases in relation to the Clementine origin, the SNP data confirm the important stratification of the gene pools around C. maxima, C. medica and C. reticulata as well as previous hypothesis on the origin of secondary species. The implemented SNP marker set will be very useful for comparative genetic mapping in Citrus and genetic association in C. reticulata.


PLOS Genetics | 2005

Sex-Specific Crossover Distributions and Variations in Interference Level along Arabidopsis thaliana Chromosome 4

Jan Drouaud; Raphael Mercier; Liudmila Chelysheva; Aurélie Bérard; Matthieu Falque; Olivier C. Martin; Vanessa Zanni; Dominique Brunel; Christine Mézard

In many species, sex-related differences in crossover (CO) rates have been described at chromosomal and regional levels. In this study, we determined the CO distribution along the entire Arabidopsis thaliana Chromosome 4 (18 Mb) in male and female meiosis, using high density genetic maps built on large backcross populations (44 markers, >1,300 plants). We observed dramatic differences between male and female map lengths that were calculated as 88 cM and 52 cM, respectively. This difference is remarkably parallel to that between the total synaptonemal complex lengths measured in male and female meiocytes by immunolabeling of ZYP1 (a component of the synaptonemal complex). Moreover, CO landscapes were clearly different: in particular, at both ends of the map, male CO rates were higher (up to 4-fold the mean value), whereas female CO rates were equal or even below the chromosomal average. This unique material gave us the opportunity to perform a detailed analysis of CO interference on Chromosome 4 in male and female meiosis. The number of COs per chromosome and the distances between them clearly departs from randomness. Strikingly, the interference level (measured by coincidence) varied significantly along the chromosome in male meiosis and was correlated to the physical distance between COs. The significance of this finding on the relevance of current CO interference models is discussed.

Collaboration


Dive into the Dominique Brunel's collaboration.

Top Co-Authors

Avatar

Aurélie Bérard

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Marie-Christine Le Paslier

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Aurélie Chauveau

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Christine Camilleri

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Régine Delourme

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Jérôme Salse

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Nicole Froger

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Pierre Barret

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Catherine Ravel

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Florent Murat

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge