Radha Gopal
University of Pittsburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Radha Gopal.
Virulence | 2010
Shabaana A. Khader; Radha Gopal
The identification of a new T cell subset referred to as T helper 17 (Th17) cells and its role in protective immunity against extracellular bacterial infections is well established. In contrast, initial studies suggested that the IL-23-IL-17 pathway was not required for protection against intracellular pathogens such as mycobacterial infections. However, recent studies demonstrate that Th17-IL-23 pathway may play a crucial role in protective immunity against other intracellular pathogens by regulating the innate and adaptive immune responses. The current outlook on the role of IL-23-IL-17 pathway in protective immunity to intracellular pathogens is discussed here.
Journal of Clinical Investigation | 2013
Samantha Slight; Javier Rangel-Moreno; Radha Gopal; Yinyao Lin; Beth A. Fallert Junecko; Smriti Mehra; Moisés Selman; Enrique Becerril-Villanueva; Javier Baquera-Heredia; Lenin Pavón; Deepak Kaushal; Todd A. Reinhart; Troy D. Randall; Shabaana A. Khader
One third of the worlds population is infected with Mycobacterium tuberculosis (Mtb). Although most infected people remain asymptomatic, they have a 10% lifetime risk of developing active tuberculosis (TB). Thus, the current challenge is to identify immune parameters that distinguish individuals with latent TB from those with active TB. Using human and experimental models of Mtb infection, we demonstrated that organized ectopic lymphoid structures containing CXCR5+ T cells were present in Mtb-infected lungs. In addition, we found that in experimental Mtb infection models, the presence of CXCR5+ T cells within ectopic lymphoid structures was associated with immune control. Furthermore, in a mouse model of Mtb infection, we showed that activated CD4+CXCR5+ T cells accumulated in Mtb-infected lungs and produced proinflammatory cytokines. Mice deficient in Cxcr5 had increased susceptibility to TB due to defective T cell localization within the lung parenchyma. We demonstrated that CXCR5 expression in T cells mediated correct T cell localization within TB granulomas, promoted efficient macrophage activation, protected against Mtb infection, and facilitated lymphoid follicle formation. These data demonstrate that CD4+CXCR5+ T cells play a protective role in the immune response against TB and highlight their potential use for future TB vaccine design and therapy.
Mucosal Immunology | 2013
Radha Gopal; Javier Rangel-Moreno; Samantha Slight; Yinyao Lin; Hesham F. Nawar; Fallert Junecko Ba; Todd A. Reinhart; Jay K. Kolls; Troy D. Randall; Terry D. Connell; Shabaana A. Khader
The variable efficacy of tuberculosis (TB) vaccines and the emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb) emphasize the urgency for not only generating new and more effective vaccines against TB but also understanding the underlying mechanisms that mediate vaccine-induced protection. We demonstrate that mucosal adjuvants, such as type II heat labile enterotoxin (LT-IIb), delivered through the mucosal route induce pulmonary Mtb-specific T helper type 17 (Th17) responses and provide vaccine-induced protection against Mtb infection. Importantly, protection is interferon-γ (IFNγ)-independent but interleukin-17 (IL-17)-dependent. Our data show that IL-17 mediates C-X-C motif chemokine ligand 13 (CXCL13) induction in the lung for strategic localization of proinflammatory cytokine-producing CXCR5+ (C-X-C motif chemokine receptor 5-positive) T cells within lymphoid structures, thereby promoting early and efficient macrophage activation and the control of Mtb. Our studies highlight the potential value of targeting the IL-17–CXCL13 pathway rather than the IFNγ pathway as a new strategy to improve mucosal vaccines against TB.
Journal of Immunology | 2011
Shabaana A. Khader; Lokesh Guglani; Javier Rangel-Moreno; Radha Gopal; Beth A. Fallert Junecko; Jeffrey J. Fountain; Cynthia A. Martino; John E. Pearl; Michael Tighe; Yinyao Lin; Samantha Slight; Jay K. Kolls; Todd A. Reinhart; Troy D. Randall; Andrea M. Cooper
IL-23 is required for the IL-17 response to infection with Mycobacterium tuberculosis, but is not required for the early control of bacterial growth. However, mice deficient for the p19 component of IL-23 (Il23a−/−) exhibit increased bacterial growth late in infection that is temporally associated with smaller B cell follicles in the lungs. Cxcl13 is required for B cell follicle formation and immunity during tuberculosis. The absence of IL-23 results in decreased expression of Cxcl13 within M. tuberculosis-induced lymphocyte follicles in the lungs, and this deficiency was associated with increased cuffing of T cells around the vessels in the lungs of these mice. Il23a−/− mice also poorly expressed IL-17A and IL-22 mRNA. These cytokines were able to induce Cxcl13 in mouse primary lung fibroblasts, suggesting that these cytokines are likely involved in B cell follicle formation. Indeed, IL-17RA–deficient mice generated smaller B cell follicles early in the response, whereas IL-22–deficient mice had smaller B cell follicles at an intermediate time postinfection; however, only Il23a−/− mice had a sustained deficiency in B cell follicle formation and reduced immunity. We propose that in the absence of IL-23, expression of long-term immunity to tuberculosis is compromised due to reduced expression of Cxcl13 in B cell follicles and reduced ability of T cells to migrate from the vessels and into the lesion. Further, although IL-17 and IL-22 can both contribute to Cxcl13 production and B cell follicle formation, it is IL-23 that is critical in this regard.
PLOS Pathogens | 2014
Radha Gopal; Leticia Monin; Samantha Slight; Uzodinma Uche; Emmeline Blanchard; Beth A. Fallert Junecko; Rosalío Ramos-Payán; Christina L. Stallings; Todd A. Reinhart; Jay K. Kolls; Deepak Kaushal; Uma M. Nagarajan; Javier Rangel-Moreno; Shabaana A. Khader
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), infects one third of the worlds population. Among these infections, clinical isolates belonging to the W-Beijing appear to be emerging, representing about 50% of Mtb isolates in East Asia, and about 13% of all Mtb isolates worldwide. In animal models, infection with W-Beijing strain, Mtb HN878, is considered “hypervirulent” as it results in increased mortality and causes exacerbated immunopathology in infected animals. We had previously shown the Interleukin (IL) -17 pathway is dispensable for primary immunity against infection with the lab adapted Mtb H37Rv strain. However, it is not known whether IL-17 has any role to play in protective immunity against infection with clinical Mtb isolates. We report here that lab adapted Mtb strains, such as H37Rv, or less virulent Mtb clinical isolates, such as Mtb CDC1551, do not require IL-17 for protective immunity against infection while infection with Mtb HN878 requires IL-17 for early protective immunity. Unexpectedly, Mtb HN878 induces robust production of IL-1β through a TLR-2-dependent mechanism, which supports potent IL-17 responses. We also show that the role for IL-17 in mediating protective immunity against Mtb HN878 is through IL-17 Receptor signaling in non-hematopoietic cells, mediating the induction of the chemokine, CXCL-13, which is required for localization of T cells within lung lymphoid follicles. Correct T cell localization within lymphoid follicles in the lung is required for maximal macrophage activation and Mtb control. Since IL-17 has a critical role in vaccine-induced immunity against TB, our results have far reaching implications for the design of vaccines and therapies to prevent and treat emerging Mtb strains. In addition, our data changes the existing paradigm that IL-17 is dispensable for primary immunity against Mtb infection, and instead suggests a differential role for IL-17 in early protective immunity against emerging Mtb strains.
American Journal of Respiratory and Critical Care Medicine | 2013
Radha Gopal; Leticia Monin; Diana Torres; Samantha Slight; Smriti Mehra; Kyle C. McKenna; Beth A. Fallert Junecko; Todd A. Reinhart; Jay K. Kolls; Renata Báez-Saldaña; Alfredo Cruz-Lagunas; Tatiana Sofía Rodríguez-Reyna; Nathella Pavan Kumar; Phillipe Tessier; J. Roth; Moisés Selman; Enrique Becerril-Villanueva; Javier Baquera-Heredia; Bridgette M. Cumming; Victoria Kasprowicz; Adrie J. C. Steyn; Subash Babu; Deepak Kaushal; Joaquín Zúñiga; Thomas Vogl; Javier Rangel-Moreno; Shabaana A. Khader
RATIONALE A hallmark of pulmonary tuberculosis (TB) is the formation of granulomas. However, the immune factors that drive the formation of a protective granuloma during latent TB, and the factors that drive the formation of inflammatory granulomas during active TB, are not well defined. OBJECTIVES The objective of this study was to identify the underlying immune mechanisms involved in formation of inflammatory granulomas seen during active TB. METHODS The immune mediators involved in inflammatory granuloma formation during TB were assessed using human samples and experimental models of Mycobacterium tuberculosis infection, using molecular and immunologic techniques. MEASUREMENTS AND MAIN RESULTS We demonstrate that in human patients with active TB and in nonhuman primate models of M. tuberculosis infection, neutrophils producing S100 proteins are dominant within the inflammatory lung granulomas seen during active TB. Using the mouse model of TB, we demonstrate that the exacerbated lung inflammation seen as a result of neutrophilic accumulation is dependent on S100A8/A9 proteins. S100A8/A9 proteins promote neutrophil accumulation by inducing production of proinflammatory chemokines and cytokines, and influencing leukocyte trafficking. Importantly, serum levels of S100A8/A9 proteins along with neutrophil-associated chemokines, such as keratinocyte chemoattractant, can be used as potential surrogate biomarkers to assess lung inflammation and disease severity in human TB. CONCLUSIONS Our results thus show a major pathologic role for S100A8/A9 proteins in mediating neutrophil accumulation and inflammation associated with TB. Thus, targeting specific molecules, such as S100A8/A9 proteins, has the potential to decrease lung tissue damage without impacting protective immunity against TB.
Journal of Translational Medicine | 2013
Diana Torres-García; Alfredo Cruz-Lagunas; Ma. Cecilia García-Sancho Figueroa; Rosario Fernández-Plata; Renata Báez-Saldaña; Criselda Mendoza-Milla; Rodrigo Barquera; Aida Carrera-Eusebio; Salomón Ramírez-Bravo; Lizeth Campos; Javier Angeles; Gilberto Vargas-Alarcón; Julio Granados; Radha Gopal; Shabaana A. Khader; Edmond J. Yunis; Joaquín Zúñiga
BackgroundThe control of Mycobacterium tuberculosis (Mtb) infection begins with the recognition of mycobacterial structural components by toll like receptors (TLRs) and other pattern recognition receptors. Our objective was to determine the influence of TLRs polymorphisms in the susceptibility to develop tuberculosis (TB) in Amerindian individuals from a rural area of Oaxaca, Mexico with high TB incidence.MethodsWe carried out a case–control association community based study, genotyping 12 polymorphisms of TLR2, TLR4, TLR6 and TLR9 genes in 90 patients with confirmed pulmonary TB and 90 unrelated exposed but asymptomatic household contacts.ResultsWe found a significant increase in the frequency of the allele A of the TLR9 gene polymorphism rs352139 (A>G) in the group of TB patients (g.f. = 0.522) when compared with controls (g.f. = 0.383), (Pcorr = 0.01, OR = 1.75). Under the recessive model (A/G + A/A vs G/G) this polymorphism was also significantly associated with TB (Pcorr = 0.01, OR= 2.37). The association of the SNP rs352139 was statistically significant after adjustment by age, gender and comorbidities by regression logistic analysis (Dominant model: p value = 0.016, OR = 2.31; Additive model: p value = 0.023, OR = 1.68). The haplotype GAA of TLR9 SNPs was also associated with TB susceptibility (Pcorr = 0.02). Differences in the genotype or allele frequencies of TLR2, TLR4 and TLR6 polymorphisms between TB patients and healthy contacts were not detected.ConclusionsOur study suggests that the allele A of the intronic polymorphism rs352139 on TLR9 gene might contribute to the risk of developing TB in Mexican Amerindians.
Journal of Clinical Investigation | 2015
Leticia Monin; Kristin L. Griffiths; Wing Y. Lam; Radha Gopal; Dongwan D. Kang; Mushtaq Ahmed; Anuradha Rajamanickam; Alfredo Cruz-Lagunas; Joaquín Zúñiga; Subash Babu; Jay K. Kolls; Makedonka Mitreva; Bruce A. Rosa; Rosalío Ramos-Payán; Thomas E. Morrison; Peter J. Murray; Javier Rangel-Moreno; Edward J. Pearce; Shabaana A. Khader
Parasitic helminth worms, such as Schistosoma mansoni, are endemic in regions with a high prevalence of tuberculosis (TB) among the population. Human studies suggest that helminth coinfections contribute to increased TB susceptibility and increased rates of TB reactivation. Prevailing models suggest that T helper type 2 (Th2) responses induced by helminth infection impair Th1 immune responses and thereby limit Mycobacterium tuberculosis (Mtb) control. Using a pulmonary mouse model of Mtb infection, we demonstrated that S. mansoni coinfection or immunization with S. mansoni egg antigens can reversibly impair Mtb-specific T cell responses without affecting macrophage-mediated Mtb control. Instead, S. mansoni infection resulted in accumulation of high arginase-1-expressing macrophages in the lung, which formed type 2 granulomas and exacerbated inflammation in Mtb-infected mice. Treatment of coinfected animals with an antihelminthic improved Mtb-specific Th1 responses and reduced disease severity. In a genetically diverse mouse population infected with Mtb, enhanced arginase-1 activity was associated with increased lung inflammation. Moreover, in patients with pulmonary TB, lung damage correlated with increased serum activity of arginase-1, which was elevated in TB patients coinfected with helminths. Together, our data indicate that helminth coinfection induces arginase-1-expressing type 2 granulomas, thereby increasing inflammation and TB disease severity. These results also provide insight into the mechanisms by which helminth coinfections drive increased susceptibility, disease progression, and severity in TB.
PLOS ONE | 2012
Lokesh Guglani; Radha Gopal; Javier Rangel-Moreno; Beth A. Fallert Junecko; Yinyao Lin; Thorsten Berger; Tak W. Mak; John F. Alcorn; Troy D. Randall; Todd A. Reinhart; Yvonne R. Chan; Shabaana A. Khader
Pulmonary tuberculosis (TB), caused by the intracellular bacteria Mycobacterium tuberculosis, is a worldwide disease that continues to kill more than 1.5 million people every year worldwide. The accumulation of lymphocytes mediates the formation of the tubercle granuloma in the lung and is crucial for host protection against M.tuberculosis infection. However, paradoxically the tubercle granuloma is also the basis for the immunopathology associated with the disease and very little is known about the regulatory mechanisms that constrain the inflammation associated with the granulomas. Lipocalin 2 (Lcn2) is a member of the lipocalin family of proteins and binds to bacterial siderophores thereby sequestering iron required for bacterial growth. Thus far, it is not known whether Lcn2 plays a role in the inflammatory response to mycobacterial pulmonary infections. In the present study, using models of acute and chronic mycobacterial pulmonary infections, we reveal a novel role for Lcn2 in constraining T cell lymphocytic accumulation and inflammation by inhibiting inflammatory chemokines, such as CXCL9. In contrast, Lcn2 promotes neutrophil recruitment during mycobacterial pulmonary infection, by inducing G-CSF and KC in alveolar macrophages. Importantly, despite a common role for Lcn2 in regulating chemokines during mycobacterial pulmonary infections, Lcn2 deficient mice are more susceptible to acute M.bovis BCG, but not low dose M.tuberculosis pulmonary infection.
Nature Communications | 2016
Kristin L. Griffiths; Mushtaq Ahmed; Shibali Das; Radha Gopal; William Horne; Terry D. Connell; Kelly D. Moynihan; Jay K. Kolls; Darrell J. Irvine; Maxim N. Artyomov; Javier Rangel-Moreno; Shabaana A. Khader
The development of a tuberculosis (TB) vaccine that induces sterilizing immunity to Mycobacterium tuberculosis infection has been elusive. Absence of sterilizing immunity induced by TB vaccines may be due to delayed activation of mucosal dendritic cells (DCs), and subsequent delay in antigen presentation and activation of vaccine-induced CD4+ T-cell responses. Here we show that pulmonary delivery of activated M. tuberculosis antigen-primed DCs into vaccinated mice, at the time of M. tuberculosis exposure, can overcome the delay in accumulation of vaccine-induced CD4+ T-cell responses. In addition, activating endogenous host CD103+ DCs and the CD40–CD40L pathway can similarly induce rapid accumulation of vaccine-induced lung CD4+ T-cell responses and limit early M. tuberculosis growth. Thus, our study provides proof of concept that targeting mucosal DCs can accelerate vaccine-induced T-cell responses on M. tuberculosis infection, and provide insights to overcome bottlenecks in TB vaccine efficacy.