Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shahid Hameed is active.

Publication


Featured researches published by Shahid Hameed.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Aβ neurotoxicity depends on interactions between copper ions, prion protein, and N-methyl-D-aspartate receptors.

Haitao You; Shigeki Tsutsui; Shahid Hameed; Thomas J. Kannanayakal; Lina Chen; Peng Xia; Jordan D. T. Engbers; Stuart A. Lipton; Peter K. Stys; Gerald W. Zamponi

N-methyl-d-aspartate receptors (NMDARs) mediate critical CNS functions, whereas excessive activity contributes to neuronal damage. At physiological glycine concentrations, NMDAR currents recorded from cultured rodent hippocampal neurons exhibited strong desensitization in the continued presence of NMDA, thus protecting neurons from calcium overload. Reducing copper availability by specific chelators (bathocuproine disulfonate, cuprizone) induced nondesensitizing NMDAR currents even at physiologically low glycine concentrations. This effect was mimicked by, and was not additive with, genetic ablation of cellular prion protein (PrPC), a key copper-binding protein in the CNS. Acute ablation of PrPC by enzymatically cleaving its cell-surface GPI anchor yielded similar effects. Biochemical studies and electrophysiological measurements revealed that PrPC interacts with the NMDAR complex in a copper-dependent manner to allosterically reduce glycine affinity for the receptor. Synthetic human Aβ1–42 (10 nM–5 μM) produced an identical effect that could be mitigated by addition of excess copper ions or NMDAR blockers. Taken together, Aβ1–42, copper chelators, or PrPC inactivation all enhance the activity of glycine at the NMDAR, giving rise to pathologically large nondesensitizing steady-state NMDAR currents and neurotoxicity. We propose a physiological role for PrPC, one that limits excessive NMDAR activity that might otherwise promote neuronal damage. In addition, we provide a unifying molecular mechanism whereby toxic species of Aβ1–42 might mediate neuronal and synaptic injury, at least in part, by disrupting the normal copper-mediated, PrPC-dependent inhibition of excessive activity of this highly calcium-permeable glutamate receptor.


Nature Neuroscience | 2006

ORL1 receptor–mediated internalization of N-type calcium channels

Christophe Altier; Houman Khosravani; Rhian M. Evans; Shahid Hameed; Jean B. Peloquin; Brian A Vartian; Lina Chen; Aaron M. Beedle; Stephen S. G. Ferguson; Alexandre Mezghrani; Stefan J. Dubel; Emmanuel Bourinet; John E. McRory; Gerald W. Zamponi

The inhibition of N-type calcium channels by opioid receptor like receptor 1 (ORL1) is a key mechanism for controlling the transmission of nociceptive signals. We recently reported that signaling complexes consisting of ORL1 receptors and N-type channels mediate a tonic inhibition of calcium entry. Here we show that prolonged (∼30 min) exposure of ORL1 receptors to their agonist nociceptin triggers an internalization of these signaling complexes into vesicular compartments. This effect is dependent on protein kinase C activation, occurs selectively for N-type channels and cannot be observed with μ-opioid or angiotensin receptors. In expression systems and in rat dorsal root ganglion neurons, the nociceptin-mediated internalization of the channels is accompanied by a significant downregulation of calcium entry, which parallels the selective removal of N-type calcium channels from the plasma membrane. This may provide a new means for long-term regulation of calcium entry in the pain pathway.


Nature Neuroscience | 2010

Regulation of neuronal activity by Cav3-Kv4 channel signaling complexes

Dustin Anderson; W. Hamish Mehaffey; Mircea Iftinca; Renata Rehak; Jordan D. T. Engbers; Shahid Hameed; Gerald W. Zamponi; Ray W. Turner

Kv4 low voltage–activated A-type potassium channels are widely expressed in excitable cells, where they control action potential firing, dendritic activity and synaptic integration. Kv4 channels exist as a complex that includes K+ channel–interacting proteins (KChIPs), which contain calcium-binding domains and therefore have the potential to confer calcium dependence on the Kv4 channel. We found that T-type calcium channels and Kv4 channels form a signaling complex in rat that efficiently couples calcium influx to KChIP3 to modulate Kv4 function. This interaction was critical for allowing Kv4 channels to function in the subthreshold membrane potential range to regulate neuronal firing properties. The widespread expression of these channels and accessory proteins indicates that the Cav3-Kv4 signaling complex is important for the function of a wide range of electrically excitable cells.


Neuron | 2008

D1 Receptors Physically Interact with N-Type Calcium Channels to Regulate Channel Distribution and Dendritic Calcium Entry

Alexandra E. Kisilevsky; Sean J. Mulligan; Christophe Altier; Mircea Iftinca; Diego Varela; Chao Tai; Lina Chen; Shahid Hameed; Jawed Hamid; Brian A. MacVicar; Gerald W. Zamponi

Dopamine signaling through D1 receptors in the prefrontal cortex (PFC) plays a critical role in the maintenance of higher cognitive functions, such as working memory. At the cellular level, these functions are predicated to involve alterations in neuronal calcium levels. The dendrites of PFC neurons express D1 receptors and N-type calcium channels, yet little information exists regarding their coupling. Here, we show that D1 receptors potently inhibit N-type channels in dendrites of rat PFC neurons. Using coimmunoprecipitation, we demonstrate the existence of a D1 receptor-N-type channel signaling complex in this region, and we provide evidence for a direct receptor-channel interaction. Finally, we demonstrate the importance of this complex to receptor-channel colocalization in heterologous systems and in PFC neurons. Our data indicate that the N-type calcium channel is an important physiological target of D1 receptors and reveal a mechanism for D1 receptor-mediated regulation of cognitive function in the PFC.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Intermediate conductance calcium-activated potassium channels modulate summation of parallel fiber input in cerebellar Purkinje cells

Jordan D. T. Engbers; Dustin Anderson; Hadhimulya Asmara; Renata Rehak; W. Hamish Mehaffey; Shahid Hameed; Bruce E. McKay; Mirna Kruskic; Gerald W. Zamponi; Ray W. Turner

Encoding sensory input requires the expression of postsynaptic ion channels to transform key features of afferent input to an appropriate pattern of spike output. Although Ca2+-activated K+ channels are known to control spike frequency in central neurons, Ca2+-activated K+ channels of intermediate conductance (KCa3.1) are believed to be restricted to peripheral neurons. We now report that cerebellar Purkinje cells express KCa3.1 channels, as evidenced through single-cell RT-PCR, immunocytochemistry, pharmacology, and single-channel recordings. Furthermore, KCa3.1 channels coimmunoprecipitate and interact with low voltage-activated Cav3.2 Ca2+ channels at the nanodomain level to support a previously undescribed transient voltage- and Ca2+-dependent current. As a result, subthreshold parallel fiber excitatory postsynaptic potentials (EPSPs) activate Cav3 Ca2+ influx to trigger a KCa3.1-mediated regulation of the EPSP and subsequent after-hyperpolarization. The Cav3-KCa3.1 complex provides powerful control over temporal summation of EPSPs, effectively suppressing low frequencies of parallel fiber input. KCa3.1 channels thus contribute to a high-pass filter that allows Purkinje cells to respond preferentially to high-frequency parallel fiber bursts characteristic of sensory input.


Journal of Biological Chemistry | 2012

A Ca(v)3.2/syntaxin-1A signaling complex controls T-type channel activity and low-threshold exocytosis.

Norbert Weiss; Shahid Hameed; José M. Fernández-Fernández; Katell Fablet; Maria Karmazinova; Cathy Poillot; Juliane Proft; Lina Chen; Isabelle Bidaud; Arnaud Monteil; Sylvaine Huc-Brandt; Lubica Lacinova; Philippe Lory; Gerald W. Zamponi; Michel De Waard

Background: T-type calcium channels play a unique role in low-threshold exocytosis. Results: Syntaxin-1A interacts with the carboxyl terminus domain of Cav3.2 channels and modulates channel activity and low-threshold exocytosis. Conclusion: Low-threshold exocytosis relies on a syntaxin-1A/T-type calcium channel signaling complex. Significance: Elucidating the molecular mechanisms by which T-type channels control low-threshold exocytosis is crucial for understanding their implication in synaptic transmission. T-type calcium channels represent a key pathway for Ca2+ entry near the resting membrane potential. Increasing evidence supports a unique role of these channels in fast and low-threshold exocytosis in an action potential-independent manner, but the underlying molecular mechanisms have remained unknown. Here, we report the existence of a syntaxin-1A/Cav3.2 T-type calcium channel signaling complex that relies on molecular determinants that are distinct from the synaptic protein interaction site (synprint) found in synaptic high voltage-activated calcium channels. This interaction potently modulated Cav3.2 channel activity, by reducing channel availability. Other members of the T-type calcium channel family were also regulated by syntaxin-1A, but to a smaller extent. Overexpression of Cav3.2 channels in MPC 9/3L-AH chromaffin cells induced low-threshold secretion that could be prevented by uncoupling the channels from syntaxin-1A. Altogether, our findings provide compelling evidence for the existence of a syntaxin-1A/T-type Ca2+ channel signaling complex and provide new insights into the molecular mechanism by which these channels control low-threshold exocytosis.


Journal of Biological Chemistry | 2010

Heterodimerization of ORL1 and opioid receptors and its consequences for N-type calcium channel regulation

Rhian M. Evans; Haitao You; Shahid Hameed; Christophe Altier; Alexandre Mezghrani; Emmanuel Bourinet; Gerald W. Zamponi

We have investigated the heterodimerization of ORL1 receptors and classical members of the opioid receptor family. All three classes of opioid receptors could be co-immunoprecipitated with ORL1 receptors from both transfected tsA-201 cell lysate and rat dorsal root ganglia lysate, suggesting that these receptors can form heterodimers. Consistent with this hypothesis, in cells expressing either one of the opioid receptors together with ORL1, prolonged ORL1 receptor activation via nociceptin application resulted in internalization of the opioid receptors. Conversely, μ-, δ-, and κ-opioid receptor activation with the appropriate ligands triggered the internalization of ORL1. The μ-opioid receptor/ORL1 receptor heterodimers were shown to associate with N-type calcium channels, with activation of μ-opioid receptors triggering N-type channel internalization, but only in the presence of ORL1. Furthermore, the formation of opioid receptor/ORL1 receptor heterodimers attenuated the ORL1 receptor-mediated inhibition of N-type channels, in part because of constitutive opioid receptor activity. Collectively, our data support the existence of heterodimers between ORL1 and classical opioid receptors, with profound implications for effectors such as N-type calcium channels.


Journal of Biological Chemistry | 2005

Characterization of the G alpha(s) regulator cysteine string protein.

Michael Natochin; Tessa N. Campbell; Brandy Barren; Linda C. Miller; Shahid Hameed; Nikolai O. Artemyev; Janice E. A. Braun

Cysteine string protein (CSP) is an abundant regulated secretory vesicle protein that is composed of a string of cysteine residues, a linker domain, and an N-terminal J domain characteristic of the DnaJ/Hsp40 co-chaperone family. We have shown previously that CSP associates with heterotrimeric GTP-binding proteins (G proteins) and promotes G protein inhibition of N-type Ca2+ channels. To elucidate the mechanisms by which CSP modulates G protein signaling, we examined the effects of CSP1–198 (full-length), CSP1–112, and CSP1–82 on the kinetics of guanine nucleotide exchange and GTP hydrolysis. In this report, we demonstrate that CSP selectively interacts with Gαs and increases steady-state GTP hydrolysis. CSP1–198 modulation of Gαs was dependent on Hsc70 (70-kDa heat shock cognate protein) and SGT (small glutamine-rich tetratricopeptide repeat domain protein), whereas modulation by CSP1–112 was Hsc70-SGT-independent. CSP1–112 preferentially associated with the inactive GDP-bound conformation of Gαs. Consistent with the stimulation of GTP hydrolysis, CSP1–112 increased guanine nucleotide exchange of Gαs. The interaction of native Gαs and CSP was confirmed by coimmunoprecipitation and showed that Gαs associates with CSP. Furthermore, transient expression of CSP in HEK cells increased cellular cAMP levels in the presence of the β2 adrenergic agonist isoproterenol. Together, these results demonstrate that CSP modulates G protein function by preferentially targeting the inactive GDP-bound form of Gαs and promoting GDP/GTP exchange. Our results show that the guanine nucleotide exchange activity of full-length CSP is, in turn, regulated by Hsc70-SGT.


Journal of Biological Chemistry | 2005

Characterization of the Gαs Regulator Cysteine String Protein

Michael Natochin; Tessa N. Campbell; Brandy Barren; Linda C. Miller; Shahid Hameed; Nikolai O. Artemyev; Janice E. A. Braun

Cysteine string protein (CSP) is an abundant regulated secretory vesicle protein that is composed of a string of cysteine residues, a linker domain, and an N-terminal J domain characteristic of the DnaJ/Hsp40 co-chaperone family. We have shown previously that CSP associates with heterotrimeric GTP-binding proteins (G proteins) and promotes G protein inhibition of N-type Ca2+ channels. To elucidate the mechanisms by which CSP modulates G protein signaling, we examined the effects of CSP1–198 (full-length), CSP1–112, and CSP1–82 on the kinetics of guanine nucleotide exchange and GTP hydrolysis. In this report, we demonstrate that CSP selectively interacts with Gαs and increases steady-state GTP hydrolysis. CSP1–198 modulation of Gαs was dependent on Hsc70 (70-kDa heat shock cognate protein) and SGT (small glutamine-rich tetratricopeptide repeat domain protein), whereas modulation by CSP1–112 was Hsc70-SGT-independent. CSP1–112 preferentially associated with the inactive GDP-bound conformation of Gαs. Consistent with the stimulation of GTP hydrolysis, CSP1–112 increased guanine nucleotide exchange of Gαs. The interaction of native Gαs and CSP was confirmed by coimmunoprecipitation and showed that Gαs associates with CSP. Furthermore, transient expression of CSP in HEK cells increased cellular cAMP levels in the presence of the β2 adrenergic agonist isoproterenol. Together, these results demonstrate that CSP modulates G protein function by preferentially targeting the inactive GDP-bound form of Gαs and promoting GDP/GTP exchange. Our results show that the guanine nucleotide exchange activity of full-length CSP is, in turn, regulated by Hsc70-SGT.


Molecular and Cellular Neuroscience | 2005

Crosstalk between huntingtin and syntaxin 1A regulates N-type calcium channels

Leigh Anne Swayne; Lina Chen; Shahid Hameed; Wendy Barr; Emily Charlesworth; Michael A. Colicos; Gerald W. Zamponi; Janice E. A. Braun

We have identified a novel interaction between huntingtin (htt) and N-type calcium channels, a channel key in coupling calcium influx with synaptic vesicle exocytosis. Htt is a widely expressed 350-kDa cytosolic protein bearing an N-terminal polyglutamine tract. Htt is proteolytically cleaved by calpains and caspases and the resultant htt N-terminal fragments have been proposed to be biologically active; however, the cellular function of htt and/or the htt fragments remains enigmatic. We show that N-terminal fragments of htt (consisting of exon1) and full-length htt associate with the synaptic protein interaction (synprint) region of the N-type calcium channel. Given that synprint has previously been shown to bind syntaxin 1A and that this association elicits inhibition of N-type calcium channels, we tested whether htt(exon1) affects the modulation of these channels. Our data indicate that htt(exon1) enhances calcium influx by blocking syntaxin 1A inhibition of N-type calcium channels and attributes a key role for htt N-terminal fragments in the fine tuning of neurotransmission.

Collaboration


Dive into the Shahid Hameed's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lina Chen

University of Calgary

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge