Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shigeki Tsutsui is active.

Publication


Featured researches published by Shigeki Tsutsui.


The Journal of Neuroscience | 2004

A1 Adenosine Receptor Upregulation and Activation Attenuates Neuroinflammation and Demyelination in a Model of Multiple Sclerosis

Shigeki Tsutsui; Jurgen Schnermann; Farshid Noorbakhsh; Scot Henry; V. Wee Yong; Brent W. Winston; Kenneth G. Warren; Christopher Power

The neuromodulator adenosine regulates immune activation and neuronal survival through specific G-protein-coupled receptors expressed on macrophages and neurons, including the A1 adenosine receptor (A1AR). Here we show that A1AR null (A1AR-/-) mice developed a severe progressive-relapsing form of experimental allergic encephalomyelitis (EAE) compared with their wild-type (A1AR+/+) littermates. Worsened demyelination, axonal injury, and enhanced activation of microglia/macrophages were observed in A1AR-/- animals. In addition, spinal cords from A1AR-/- mice demonstrated increased proinflammatory gene expression during EAE, whereas anti-inflammatory genes were suppressed compared with A1AR+/+ animals. Macrophages from A1AR-/- animals exhibited increased expression of the proinflammatory genes, interleukin-1β, and matrix metalloproteinase-12 on immune activation when matched with A1AR+/+ control cells. A1AR-/- macrophage-derived soluble factors caused significant oligodendrocyte cytotoxicity compared with wild-type controls. The A1AR was downregulated in microglia in A1AR+/+ mice during EAE accompanied by neuroinflammation, which recapitulated findings in multiple sclerosis (MS) patients. Caffeine treatment augmented A1AR expression on microglia, with ensuing reduction of EAE severity, which was further enhanced by concomitant treatment with the A1AR agonist, adenosine amine congener. Thus, modulation of neuroinflammation by the A1AR represents a novel mechanism that provides new therapeutic opportunities for MS and other demyelinating diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Aβ neurotoxicity depends on interactions between copper ions, prion protein, and N-methyl-D-aspartate receptors.

Haitao You; Shigeki Tsutsui; Shahid Hameed; Thomas J. Kannanayakal; Lina Chen; Peng Xia; Jordan D. T. Engbers; Stuart A. Lipton; Peter K. Stys; Gerald W. Zamponi

N-methyl-d-aspartate receptors (NMDARs) mediate critical CNS functions, whereas excessive activity contributes to neuronal damage. At physiological glycine concentrations, NMDAR currents recorded from cultured rodent hippocampal neurons exhibited strong desensitization in the continued presence of NMDA, thus protecting neurons from calcium overload. Reducing copper availability by specific chelators (bathocuproine disulfonate, cuprizone) induced nondesensitizing NMDAR currents even at physiologically low glycine concentrations. This effect was mimicked by, and was not additive with, genetic ablation of cellular prion protein (PrPC), a key copper-binding protein in the CNS. Acute ablation of PrPC by enzymatically cleaving its cell-surface GPI anchor yielded similar effects. Biochemical studies and electrophysiological measurements revealed that PrPC interacts with the NMDAR complex in a copper-dependent manner to allosterically reduce glycine affinity for the receptor. Synthetic human Aβ1–42 (10 nM–5 μM) produced an identical effect that could be mitigated by addition of excess copper ions or NMDAR blockers. Taken together, Aβ1–42, copper chelators, or PrPC inactivation all enhance the activity of glycine at the NMDAR, giving rise to pathologically large nondesensitizing steady-state NMDAR currents and neurotoxicity. We propose a physiological role for PrPC, one that limits excessive NMDAR activity that might otherwise promote neuronal damage. In addition, we provide a unifying molecular mechanism whereby toxic species of Aβ1–42 might mediate neuronal and synaptic injury, at least in part, by disrupting the normal copper-mediated, PrPC-dependent inhibition of excessive activity of this highly calcium-permeable glutamate receptor.


Journal of Experimental Medicine | 2006

Proteinase-activated receptor 2 modulates neuroinflammation in experimental autoimmune encephalomyelitis and multiple sclerosis

Farshid Noorbakhsh; Shigeki Tsutsui; Nathalie Vergnolle; Leonie A. Boven; Neda Shariat; Mohammed Vodjgani; Kenneth G. Warren; Patricia Andrade-Gordon; Morley D. Hollenberg; Christopher Power

The proteinase-activated receptors (PARs) are widely recognized for their modulatory properties of inflammation and neurodegeneration. We investigated the role of PAR2 in the pathogenesis of multiple sclerosis (MS) in humans and experimental autoimmune encephalomyelitis (EAE) in mice. PAR2 expression was increased on astrocytes and infiltrating macrophages in human MS and murine EAE central nervous system (CNS) white matter (P < 0.05). Macrophages and astrocytes from PAR2 wild-type (WT) and knockout (KO) mice exhibited differential immune gene expression with PAR2 KO macrophages showing significantly higher interleukin 10 production after lipopolysaccharide stimulation (P < 0.001). PAR2 activation in macrophages resulted in the release of soluble oligodendrocyte cytotoxins (P < 0.01). Myelin oligodendrocyte glycoprotein–induced EAE caused more severe inflammatory gene expression in the CNS of PAR2 WT animals (P < 0.05), together with enhanced T cell proliferation and interferon γ production (P < 0.05), compared with KO littermates. Indeed, PAR2 WT animals showed markedly greater microglial activation and T lymphocyte infiltration accompanied by worsened demyelination and axonal injury in the CNS compared with their PAR2 KO littermates. Enhanced neuropathological changes were associated with a more severe progressive relapsing disease phenotype (P < 0.001) in WT animals. These findings reveal previously unreported pathogenic interactions between CNS PAR2 expression and neuroinflammation with ensuing demyelination and axonal injury.


Journal of Immunology | 2003

Phosphatidylserine on HIV Envelope Is a Cofactor for Infection of Monocytic Cells

Melissa K. Callahan; Paul M. Popernack; Shigeki Tsutsui; Linh T. Truong; Robert A. Schlegel; Andrew J. Henderson

HIV-1 is an enveloped retrovirus that acquires its outer membrane as the virion exits the cell. Because of the association of apoptosis with the progression of AIDS, HIV-1-infected T cells or macrophages might be expected to express elevated levels of surface phosphatidylserine (PS), a hallmark of programmed cell death. Virions produced by these cells would also be predicted to have PS on the surface of their envelopes. In this study, data are presented that support this hypothesis and suggest that PS is required for macrophage infection. The PS-specific protein annexin V was used to enrich for virus particles and to inhibit HIV-1 replication in primary macrophages, but not T cells. HIV-1 replication was also significantly inhibited with vesicles consisting of PS, but not phosphatidylcholine. PS is specifically required for HIV-1 infection because viruses pseudotyped with vesicular stomatitis virus G and amphotropic murine leukemia virus envelopes were not inhibited by PS vesicles or annexin V. These data indicate that PS is an important cofactor for HIV-1 infection of macrophages.


Neurobiology of Disease | 2009

Viral-like brain inflammation during development causes increased seizure susceptibility in adult rats

Michael A. Galic; Kiarash Riazi; Amy K. Henderson; Shigeki Tsutsui; Quentin J. Pittman

Viral infections of the CNS and their accompanying inflammation can cause long-term neurological effects, including increased risk for seizures. To examine the effects of CNS inflammation, we infused polyinosinic:polycytidylic acid, intracerebroventricularly to mimic a viral CNS infection in 14 day-old rats. This caused fever and an increase in the pro-inflammatory cytokine, interleukin (IL)-1beta in the brain. As young adults, these animals were more susceptible to lithium-pilocarpine and pentylenetetrazol-induced seizures and showed memory deficits in fear conditioning. Whereas there was no alteration in adult hippocampal cytokine levels, we found a marked increase in NMDA (NR2A and C) and AMPA (GluR1) glutamate receptor subunit mRNA expression. The increase in seizure susceptibility, glutamate receptor subunits, and hippocampal IL-1beta levels were suppressed by neonatal systemic minocycline. Thus, a novel model of viral CNS inflammation reveals pathophysiological relationships between brain cytokines, glutamate receptors, behaviour and seizures, which can be attenuated by anti-inflammatory agents like minocycline.


The Journal of Neuroscience | 2010

Early Life Activation of Toll-Like Receptor 4 Reprograms Neural Anti-Inflammatory Pathways

Michael A. Galic; Shaun Ellis; Sarah J. Spencer; Shigeki Tsutsui; Quentin J. Pittman

A single postnatal exposure to the bacterial endotoxin, lipopolysaccharide (LPS), reduces the neuroimmune response to a subsequent LPS exposure in the adult rat. The attenuated fever and proinflammatory response is caused by a paradoxical, amplified, early corticosterone response to LPS. Here we identify the mechanisms underlying the heightened corticosterone response to LPS in adults after early life exposure to LPS. In postnatal LPS-treated rats, hypothalamic corticotrophin-releasing hormone mRNA, pituitary proopiomelanocortin mRNA, and circulating adrenocorticotrophic hormone were all increased after adult exposure to LPS without significant modification to hippocampal or hypothalamic glucocorticoid receptor mRNA or protein or vagally mediated afferent signaling to the brain. Postnatal LPS administration did cause a persistent upregulation of the LPS Toll-like receptor-4 (TLR4) mRNA in liver and spleen, but not in brain, pituitary, or adrenal gland. In addition, cyclooxygenase-2 (COX-2), which is a prostaglandin biosynthetic enzyme and is normally undetectable in most peripheral tissue, was constitutively expressed in the liver. Adult immune activation of the upregulated TLR4 and COX-2 caused a rapid, amplified rise in circulating, but not brain, prostaglandin E2 that induced an early, enhanced activation of the hypothalamic-pituitary-adrenal (HPA) axis. Thus, postnatal LPS reprograms the neuroimmune axis by priming peripheral tissues to create a novel, prostaglandin-mediated activation of the HPA axis brought about by increased constitutive expression of TLR4 and COX-2.


Annals of Neurology | 2003

Growth hormone prevents human immunodeficiency virus–induced neuronal p53 expression

Claudia Silva; Kunyan Zhang; Shigeki Tsutsui; Janet Holden; M. John Gill; Christopher Power

Growth hormone (GH) is neuroprotective, presumably through its actions on GH receptor–mediated pathways. Here, we examined the effects of GH using in vitro and in vivo assays of human immunodeficiency virus (HIV)–induced neuronal injury. Neuronal cultures were in assays of neurotoxicity induced by supernatants from HIV‐1 tat‐transfected monocytoid cells (Tat supernatant). GH treatment reduced neuronal death compared with untreated cultures (p < 0.001), which was blocked by a GH receptor antagonist, B2036. Tat supernatant–induced p53 expression in neurons was also reduced by GH treatment. Expression of both p53 and GH receptor were increased in brain tissue from HIV‐infected persons compared with controls (p < 0.05). Mice receiving intrastriatal implants of Tat supernatant and treated with GH showed less neurobehavioral abnormalities together with reduced neuroinflammation and neuronal injury compared with untreated animals (p < 0.01). Three acquired immunodeficiency syndrome–defined patients with neurocognitive impairment were serially evaluated during daily GH treatment showing a sustained improvement in neuropsychological performance (p < 0.01). GH prevents neuronal death through its actions on neurons involving a p53‐mediated pathway and also improved in vivo neurological function, indicating that GH may have a role in the treatment of HIV‐induced neurodegeneration. Ann Neurol 2003;54:605–614


Journal of Immunology | 2009

Early Life Exposure to Lipopolysaccharide Suppresses Experimental Autoimmune Encephalomyelitis by Promoting Tolerogenic Dendritic Cells and Regulatory T Cells

Kristofor K. Ellestad; Shigeki Tsutsui; Farshid Noorbakhsh; Kenneth G. Warren; V. Wee Yong; Quentin J. Pittman; Christopher Power

The rising incidence of autoimmune diseases such as multiple sclerosis (MS) in developed countries might be due to a more hygienic environment, particularly during early life. To investigate this concept, we developed a model of neonatal exposure to a common pathogen-associated molecular pattern, LPS, and determined its impact on experimental autoimmune encephalomyelitis (EAE). Mice exposed to LPS at 2 wk of age showed a delayed onset and diminished severity of myelin oligodendrocyte glycoprotein (MOG)-induced EAE, induced at 12 wk, compared with vehicle-exposed animals. Spinal cord transcript levels of CD3ε and F4/80 were lower in LPS- compared with PBS-exposed EAE animals with increased IL-10 levels in the LPS-exposed group. Splenic CD11c+ cells from LPS-exposed animals exhibited reduced MHC class II and CD83 expression but increased levels of CD80 and CD86 both before and during EAE. MOG-treated APC from LPS-exposed animals stimulated less T lymphocyte proliferation but increased expansion of CD4+FoxP3+ T cells compared with APC from PBS-exposed animals. Neuropathological studies disclosed reduced myelin and axonal loss in spinal cords from LPS-exposed compared with PBS-exposed animals with EAE, and this neuroprotective effect was associated with an increased number of CD3+FoxP3+ immunoreactive cells. Analyses of human brain tissue revealed that FoxP3 expression was detected in lymphocytes, albeit reduced in MS compared with non-MS patients’ brains. These findings support the concept of early-life microbial exposure influencing the generation of neuroprotective regulatory T cells and may provide insights into new immunotherapeutic strategies for MS.


Journal of Immunology | 2005

Lentivirus Infection Causes Neuroinflammation and Neuronal Injury in Dorsal Root Ganglia: Pathogenic Effects of STAT-1 and Inducible Nitric Oxide Synthase

Yu Zhu; Gareth T. Jones; Shigeki Tsutsui; Wycliffe O. Opii; Shuhong Liu; Claudia Silva; D. Allan Butterfield; Christopher Power

Distal sensory polyneuropathy (DSP) is currently the most common neurological complication of HIV infection in the developed world and is characterized by sensory neuronal injury accompanied by inflammation, which is clinically manifested as disabling pain and gait instability. We previously showed that feline immunodeficiency virus (FIV) infection of cats caused DSP together with immunosuppression in cats, similar to that observed in HIV-infected humans. In this study, we investigated the pathogenic mechanisms underlying the development of FIV-induced DSP using feline dorsal root ganglia (DRG) cultures, consisting of neurons, Schwann cells, and macrophages. FIV-infected cultures exhibited viral Ags (p24 and envelope) in macrophages accompanied by neuronal injury, indicated by neurite retraction, neuronal loss and decreased soma size, compared with mock-infected (control) cultures. FIV infection up-regulated inducible NO synthase (iNOS), STAT-1, and TNF-α mRNA levels in DRG cultures. Increased STAT-1 and iNOS mRNA levels were also observed in DRGs from FIV-infected animals relative to mock-infected controls. Similarly, immunolabeling studies of DRGs from FIV-infected animals showed that macrophages were the principal sources of STAT-1 and iNOS protein production. The iNOS inhibitor aminoguanidine reduced nitrotyrosine and protein carbonyl levels, together with preventing neuronal injury in FIV-infected DRG cultures. The present studies indicate that FIV infection of DRGs directly contributes to axonal and neuronal injury through a mechanism involving macrophage immune activation, which is mediated by STAT-1 and iNOS activation.


American Journal of Pathology | 2008

Absence of the Cellular Prion Protein Exacerbates and Prolongs Neuroinflammation in Experimental Autoimmune Encephalomyelitis

Shigeki Tsutsui; Jennifer N. Hahn; Trina A. Johnson; Zenobia Ali; Frank R. Jirik

Although the physiological roles of the cellular prion protein (PrP C) remain to be fully elucidated, PrP C has been proposed to represent a potential regulator of cellular immunity. To test this hypothesis, we evaluated the consequences of PrP C deficiency on the course of experimental autoimmune encephalomyelitis induced by immunization with myelin oligodendrocyte glycoprotein peptide. Consistent with augmented proliferative responses and increased cytokine gene expression by myelin oligodendrocyte glycoprotein-primed Prnp-/- T cells, PrP C-deficient mice demonstrated more aggressive disease onset and a lack of clinical improvement during the chronic phase of experimental autoimmune encephalomyelitis. Acutely, Prnp-/- spinal cord, cerebellum, and forebrain exhibited higher levels of leukocytic infiltrates and pro-inflammatory cytokine gene expression, as well as increased spinal cord myelin basic protein and axonal loss. During the chronic phase, a remarkable persistence of leukocytic infiltrates was present in the forebrain and cerebellum, accompanied by an increase in interferon-gamma and interleukin-17 transcripts. Attenuation of T cell-dependent neuroinflammation thus represents a potential novel function of PrP C.

Collaboration


Dive into the Shigeki Tsutsui's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge