Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shahid Naeem is active.

Publication


Featured researches published by Shahid Naeem.


Ecological Monographs | 2005

EFFECTS OF BIODIVERSITY ON ECOSYSTEM FUNCTIONING: A CONSENSUS OF CURRENT KNOWLEDGE

David U. Hooper; F. S. Chapin; John J. Ewel; Andy Hector; P. Inchausti; Sandra Lavorel; John H. Lawton; David M. Lodge; Michel Loreau; Shahid Naeem; Bernhard Schmid; Heikki Setälä; A. J. Symstad; J. Vandermeer; David A. Wardle

Humans are altering the composition of biological communities through a variety of activities that increase rates of species invasions and species extinctions, at all scales, from local to global. These changes in components of the Earths biodiversity cause concern for ethical and aesthetic reasons, but they also have a strong potential to alter ecosystem properties and the goods and services they provide to humanity. Ecological experiments, observations, and theoretical developments show that ecosystem properties depend greatly on biodiversity in terms of the functional characteristics of organisms present in the ecosystem and the distribution and abundance of those organisms over space and time. Species effects act in concert with the effects of climate, resource availability, and disturbance regimes in influencing ecosystem properties. Human activities can modify all of the above factors; here we focus on modification of these biotic controls. The scientific community has come to a broad consensus on many aspects of the re- lationship between biodiversity and ecosystem functioning, including many points relevant to management of ecosystems. Further progress will require integration of knowledge about biotic and abiotic controls on ecosystem properties, how ecological communities are struc- tured, and the forces driving species extinctions and invasions. To strengthen links to policy and management, we also need to integrate our ecological knowledge with understanding of the social and economic constraints of potential management practices. Understanding this complexity, while taking strong steps to minimize current losses of species, is necessary for responsible management of Earths ecosystems and the diverse biota they contain.


Nature | 2012

Biodiversity loss and its impact on humanity

Bradley J. Cardinale; J. Emmett Duffy; Andrew Gonzalez; David U. Hooper; Charles Perrings; Patrick Venail; Anita Narwani; Georgina M. Mace; David Tilman; David A. Wardle; Ann P. Kinzig; Gretchen C. Daily; Michel Loreau; James B. Grace; Anne Larigauderie; Diane S. Srivastava; Shahid Naeem

The most unique feature of Earth is the existence of life, and the most extraordinary feature of life is its diversity. Approximately 9 million types of plants, animals, protists and fungi inhabit the Earth. So, too, do 7 billion people. Two decades ago, at the first Earth Summit, the vast majority of the world’s nations declared that human actions were dismantling the Earth’s ecosystems, eliminating genes, species and biological traits at an alarming rate. This observation led to the question of how such loss of biological diversity will alter the functioning of ecosystems and their ability to provide society with the goods and services needed to prosper.


Ecological Economics | 1998

The value of the world's ecosystem services and natural capital

Robert Costanza; Rudolf de Groot; Stephen Farberk; Monica Grasso; Bruce Hannon; Karin E. Limburg; Shahid Naeem; José M. Paruelo; Robert Raskin; Paul Suttonkk; Marjan van den Belt

This article provides a crude initial estimate of the value of ecosystem services to the economy. Using data from previous published studies and a few original calculations the current economic value of 17 ecosystem services for 16 biomes was estimated. The services of ecological systems and the natural capital stocks that produce them are critical to the functioning of the Earths life-support system. They contribute to human welfare both directly and indirectly and therefore represent part of the total economic value of the planet. It was estimated that for the entire biosphere the value (most of which is outside the market) ranges US


Nature | 1997

Biodiversity enhances ecosystem reliability

Shahid Naeem; Shibin Li

16-54 trillion/year with an average of US


Nature | 2002

Biodiversity as a barrier to ecological invasion

Theodore A. Kennedy; Shahid Naeem; Katherine M. Howe; Johannes M. H. Knops; David Tilman; Peter B. Reich

33 trillion/year. Due to the nature of uncertainties this must be considered a minimum estimate. In addition the global gross national product total is around US


Nature | 2006

Nitrogen limitation constrains sustainability of ecosystem response to CO2

Peter B. Reich; Sarah E. Hobbie; Tali D. Lee; David S. Ellsworth; Jason B. West; David Tilman; Johannes M. H. Knops; Shahid Naeem; Jared Trost

18 trillion/year.


Ecology | 2007

THE INVASION PARADOX: RECONCILING PATTERN AND PROCESS IN SPECIES INVASIONS

Jason D. Fridley; John J. Stachowicz; Shahid Naeem; Dov F. Sax; Eric W. Seabloom; Melinda D. Smith; Thomas J. Stohlgren; David Tilman; B. Von Holle

Biodiversity may represent a form of biological insurance against the loss or poor performance of selected species. If this is the case, then communities with larger numbers of species should be more predictable with respect to properties such as local biomass. That is, larger numbers of species should enhance ecosystem reliability, where reliability refers to the probability that a system will provide a consistent level of performance over a given unit of time. The validity of this hypothesis has important ecological, management and economic implications given the large-scale substitution of diverse natural ecosystems with less diverse managed systems. No experimental evidence, however, has supported this hypothesis. To test this hypothesis we established replicated microbial microcosms with varying numbers of species per functional group. We found that as the number of species per functional group increased, replicate communities were more consistent in biomass and density measures. These results suggest that redundancy (in the sense of having multiple species per functional group) is a valuable commodity, and that the provision of adequate redundancy may be one reason for preserving biodiversity.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Annually reoccurring bacterial communities are predictable from ocean conditions.

Jed A. Fuhrman; Ian Hewson; Michael S. Schwalbach; Joshua A. Steele; Mark V. Brown; Shahid Naeem

Biological invasions are a pervasive and costly environmental problem that has been the focus of intense management and research activities over the past half century. Yet accurate predictions of community susceptibility to invasion remain elusive. The diversity resistance hypothesis, which argues that diverse communities are highly competitive and readily resist invasion, is supported by both theory and experimental studies conducted at small spatial scales. However, there is also convincing evidence that the relationship between the diversity of native and invading species is positive when measured at regional scales. Although this latter relationship may arise from extrinsic factors, such as resource heterogeneity, that covary with diversity of native and invading species at large scales, the mechanisms conferring greater invasion resistance to diverse communities at local scales remain unknown. Using neighbourhood analyses, a technique from plant competition studies, we show here that species diversity in small experimental grassland plots enhances invasion resistance by increasing crowding and species richness in localized plant neighbourhoods. Both the establishment (number of invaders) and success (proportion of invaders that are large) of invading plants are reduced. These results suggest that local biodiversity represents an important line of defence against the spread of invaders.


Science | 2012

The Functions of Biological Diversity in an Age of Extinction

Shahid Naeem; J. Emmett Duffy; Erika S. Zavaleta

Enhanced plant biomass accumulation in response to elevated atmospheric CO2 concentration could dampen the future rate of increase in CO2 levels and associated climate warming. However, it is unknown whether CO2-induced stimulation of plant growth and biomass accumulation will be sustained or whether limited nitrogen (N) availability constrains greater plant growth in a CO2-enriched world. Here we show, after a six-year field study of perennial grassland species grown under ambient and elevated levels of CO2 and N, that low availability of N progressively suppresses the positive response of plant biomass to elevated CO2. Initially, the stimulation of total plant biomass by elevated CO2 was no greater at enriched than at ambient N supply. After four to six years, however, elevated CO2 stimulated plant biomass much less under ambient than enriched N supply. This response was consistent with the temporally divergent effects of elevated CO2 on soil and plant N dynamics at differing levels of N supply. Our results indicate that variability in availability of soil N and deposition of atmospheric N are both likely to influence the response of plant biomass accumulation to elevated atmospheric CO2. Given that limitations to productivity resulting from the insufficient availability of N are widespread in both unmanaged and managed vegetation, soil N supply is probably an important constraint on global terrestrial responses to elevated CO2.


Ecology | 2011

Functional and phylogenetic diversity as predictors of biodiversity–ecosystem-function relationships

Dan F. B. Flynn; Nicholas Mirotchnick; Meha Jain; Matthew I. Palmer; Shahid Naeem

The invasion paradox describes the co-occurrence of independent lines of support for both a negative and a positive relationship between native biodiversity and the invasions of exotic species. The paradox leaves the implications of native-exotic species richness relationships open to debate: Are rich native communities more or less susceptible to invasion by exotic species? We reviewed the considerable observational, experimental, and theoretical evidence describing the paradox and sought generalizations concerning where and why the paradox occurs, its implications for community ecology and assembly processes, and its relevance for restoration, management, and policy associated with species invasions. The crux of the paradox concerns positive associations between native and exotic species richness at broad spatial scales, and negative associations at fine scales, especially in experiments in which diversity was directly manipulated. We identified eight processes that can generate either negative or positive native-exotic richness relationships, but none can generate both. As all eight processes have been shown to be important in some systems, a simple general theory of the paradox, and thus of the relationship between diversity and invasibility, is probably unrealistic. Nonetheless, we outline several key issues that help resolve the paradox, discuss the difficult juxtaposition of experimental and observational data (which often ask subtly different questions), and identify important themes for additional study. We conclude that natively rich ecosystems are likely to be hotspots for exotic species, but that reduction of local species richness can further accelerate the invasion of these and other vulnerable habitats.

Collaboration


Dive into the Shahid Naeem's collaboration.

Top Co-Authors

Avatar

David Tilman

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel E. Bunker

New Jersey Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Robert Costanza

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Ann P. Kinzig

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johannes M. H. Knops

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge