Shahinoor Begum
Massachusetts Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shahinoor Begum.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Myriam Labelle; Shahinoor Begum; Richard O. Hynes
Significance Specialized microenvironments (or “niches”) are essential for metastasis, but how cancer cells and host cells contribute to their establishment remains poorly understood. Our study reveals that platelets and granulocytes are sequentially recruited to disseminated tumor cells to form “early metastatic niches” that promote metastatic progression. Importantly, the recruitment of granulocytes is not primarily due to tumor cell-derived signals but rather relies on platelet-derived CXCL5/7 chemokines. Prevention of granulocyte recruitment via inhibition of the CXCL5/7 receptor CXCR2, or depletion of either platelets or granulocytes inhibits metastasis, thereby uncovering a key role for platelet-to-granulocyte signaling in the establishment of metastases. Specific inhibition of platelet-to-granulocyte interactions may thus represent a valuable antimetastatic therapy in addition to cancer cell-centered treatments. During metastasis, host cells are recruited to disseminated tumor cells to form specialized microenvironments (“niches”) that promote metastatic progression, but the mechanisms guiding the assembly of these niches are largely unknown. Tumor cells may autonomously recruit host cells or, alternatively, host cell-to-host cell interactions may guide the formation of these prometastatic microenvironments. Here, we show that platelet-derived rather than tumor cell-derived signals are required for the rapid recruitment of granulocytes to tumor cells to form “early metastatic niches.” Granulocyte recruitment relies on the secretion of CXCL5 and CXCL7 chemokines by platelets upon contact with tumor cells. Blockade of the CXCL5/7 receptor CXCR2, or transient depletion of either platelets or granulocytes prevents the formation of early metastatic niches and significantly reduces metastatic seeding and progression. Thus, platelets recruit granulocytes and guide the formation of early metastatic niches, which are crucial for metastasis.
Scientific Reports | 2016
Josephine Shaw Bagnall; Sangwon Byun; Shahinoor Begum; David T. Miyamoto; Vivian C. Hecht; Shyamala Maheswaran; Shannon L. Stott; Mehmet Toner; Richard O. Hynes; Scott R. Manalis
The potential for circulating tumor cells (CTCs) to elucidate the process of cancer metastasis and inform clinical decision-making has made their isolation of great importance. However, CTCs are rare in the blood, and universal properties with which to identify them remain elusive. As technological advancements have made single-cell deformability measurements increasingly routine, the assessment of physical distinctions between tumor cells and blood cells may provide insight into the feasibility of deformability-based methods for identifying CTCs in patient blood. To this end, we present an initial study assessing deformability differences between tumor cells and blood cells, indicated by the length of time required for them to pass through a microfluidic constriction. Here, we demonstrate that deformability changes in tumor cells that have undergone phenotypic shifts are small compared to differences between tumor cell lines and blood cells. Additionally, in a syngeneic mouse tumor model, cells that are able to exit a tumor and enter circulation are not required to be more deformable than the cells that were first injected into the mouse. However, a limited study of metastatic prostate cancer patients provides evidence that some CTCs may be more mechanically similar to blood cells than to typical tumor cell lines.
Clinical & Experimental Metastasis | 2010
Lei Xu; Shahinoor Begum; Marc Barry; Denise Crowley; Liquan Yang; Roderick T. Bronson; Richard O. Hynes
GPR56, a non-classical adhesion receptor, was previously reported to suppress tumor growth and metastasis in xenograft models using human melanoma cell lines. To understand whether GPR56 plays similar roles in the development of endogenous tumors, we analyzed cancer progression in Gpr56−/− mice using a variety of transgenic cancer models. Our results showed that GPR56 suppressed prostate cancer progression in the TRAMP model on a mixed genetic background, similar to its roles in progression of melanoma xenografts. However, its roles in other cancer types appeared to be complex. It had marginal effects on tumor onset of mammary tumors in the MMTV–PyMT model, but had no effects on subsequent tumor progression in either the MMTV–PyMT mice or the melanoma model, Ink4a/Arf−/−tyr-Hras. These results indicate diverse roles of GPR56 in cancer progression and provide the first genetic evidence for the involvement of an adhesion GPCR in endogenous cancer development.
Developmental Dynamics | 2010
Guangchun Chen; Liquan Yang; Shahinoor Begum; Lei Xu
Testis development is critical for male fertility and continuation of the mammalian species. Essential structural components of testes are seminiferous tubules, which are lined by Sertoli cells and provide nutrients and physical protection for the maturation of sperm. Seminiferous tubule formation is initiated in embryos as testis cords and relies on their remodeling for maturation during development. Recently, three‐dimensional image analyses showed that testis cords in different parts of embryonic gonads undergo distinct remodeling processes. How this asymmetric remodeling is regulated has not been investigated. We report here that the absence of an adhesion G protein‐coupled receptor, GPR56, leads to partial disruption of seminiferous tubules and reduced fertility in male mice. The defects appear to originate asymmetrically in embryonic gonads, but subsequent to the initial establishment of testis cords, suggesting that GPR56 might act to establish a spatial and/or temporal cue for asymmetric cord remodeling during male gonad development. Developmental Dynamics 239:3358–3367, 2010.
PLOS ONE | 2015
Patrick A. Murphy; Shahinoor Begum; Richard O. Hynes
Binding of α5β1 and αvβ3/β5 integrin receptors on the endothelium to their fibronectin substrate in the extracellular matrix has been targeted as a possible means of blocking tumor angiogenesis and tumor growth. However, clinical trials of blocking antibodies and peptides have been disappointing despite promising preclinical results, leading to questions about the mechanism of the inhibitors and the reasons for their failure. Here, using tissue-specific and inducible genetics to delete the α5 and αv receptors in the endothelium or their fibronectin substrate, either in the endothelium or globally, we show that both are dispensable for tumor growth, in transplanted tumors as well as spontaneous and angiogenesis-dependent RIP-Tag-driven pancreatic adenocarcinomas. In the nearly complete absence of fibronectin, no differences in vascular density or the deposition of basement membrane laminins, ColIV, Nid1, Nid2, or the TGFβ binding matrix proteins, fibrillin-1 and -2, could be observed. Our results reveal that fibronectin and the endothelial fibronectin receptor subunits, α5 and αv, are dispensable for tumor angiogenesis, suggesting that the inhibition of angiogenesis induced by antibodies or small molecules may occur through a dominant negative effect, rather than a simple functional block.
eLife | 2018
Patrick A. Murphy; Vincent Butty; Paul L. Boutz; Shahinoor Begum; Amy L Kimble; Phillip A. Sharp; Christopher B. Burge; Richard O. Hynes
Low and disturbed blood flow drives the progression of arterial diseases including atherosclerosis and aneurysms. The endothelial response to flow and its interactions with recruited platelets and leukocytes determine disease progression. Here, we report widespread changes in alternative splicing of pre-mRNA in the flow-activated murine arterial endothelium in vivo. Alternative splicing was suppressed by depletion of platelets and macrophages recruited to the arterial endothelium under low and disturbed flow. Binding motifs for the Rbfox-family are enriched adjacent to many of the regulated exons. Endothelial deletion of Rbfox2, the only family member expressed in arterial endothelium, suppresses a subset of the changes in transcription and RNA splicing induced by low flow. Our data reveal an alternative splicing program activated by Rbfox2 in the endothelium on recruitment of platelets and macrophages and demonstrate its relevance in transcriptional responses during flow-driven vascular inflammation.
Cancer Research | 2011
Mvriam Labelle; Shahinoor Begum; Richard O. Hynes
Interactions of cancer cells with the primary tumor microenvironment are important determinants of cancer progression towards metastasis but it is unknown whether additional prometastatic signals are provided during the intravascular transit to the site of metastasis. Here, we have tested whether platelets present in the bloodstream can provide a signaling platform for cancer cells outside of the primary tumor and influence the metastatic potential of tumor cells. We show that platelet-tumor cell interactions are sufficient to prime tumor cells for subsequent metastasis. Platelet-derived TGFs and direct platelet-tumor cell contacts synergistically activate the TGFs/Smad and NF-κB pathways in cancer cells, resulting in their transition to an invasive mesenchymal-like phenotype and enhanced metastasis in vivo. Inhibition of NF-κB signaling in cancer cells or ablation of TGFs1 expression solely in platelets protects against lung metastasis in vivo. Thus, our study establishes platelets as a major and critical source of TGFs bioavailable to cancer cells in the circulation, and reveals that the metastatic potential of tumor cells continues to evolve outside the primary tumor site, in response to tumor-host interactions in the bloodstream. Platelet-tumor cell interactions and the signaling pathways that they trigger are therefore crucial determinants of cancer metastasis and potential targets for anti-metastatic therapies. This abstract is also presented as Poster A9. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the Second AACR International Conference on Frontiers in Basic Cancer Research; 2011 Sep 14-18; San Francisco, CA. Philadelphia (PA): AACR; Cancer Res 2011;71(18 Suppl):Abstract nr PR1.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Lei Xu; Shahinoor Begum; Jeremy D. Hearn; Richard O. Hynes
PMC | 2013
Xiaosai Yao; Myriam Labelle; Carla Lamb; John M. Dugan; Christina Williamson; Donna R. Spencer; Kimberly R. Christ; Ryan O. Keating; W. David Lee; Glenn A. Paradis; Shahinoor Begum; Richard O. Hynes; Karl Dane Wittrup
Blood | 2013
Shahinoor Begum; Myriam Labelle