Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shahryar F. Kianian is active.

Publication


Featured researches published by Shahryar F. Kianian.


Science | 2008

A Physical Map of the 1-Gigabase Bread Wheat Chromosome 3B

Etienne Paux; Pierre Sourdille; Jérôme Salse; Cyrille Saintenac; Frédéric Choulet; Philippe Leroy; Abraham B. Korol; Monika Michalak; Shahryar F. Kianian; Wolfgang Spielmeyer; Evans S. Lagudah; Daryl J. Somers; Andrzej Kilian; Michael Alaux; Sonia Vautrin; Hélène Bergès; Kellye Eversole; R. Appels; Jan Safar; Hana Šimková; Jaroslav Dolezel; M. Bernard; Catherine Feuillet

As the staple food for 35% of the worlds population, wheat is one of the most important crop species. To date, sequence-based tools to accelerate wheat improvement are lacking. As part of the international effort to sequence the 17–billion–base-pair hexaploid bread wheat genome (2n = 6x = 42 chromosomes), we constructed a bacterial artificial chromosome (BAC)–based integrated physical map of the largest chromosome, 3B, that alone is 995 megabases. A chromosome-specific BAC library was used to assemble 82% of the chromosome into 1036 contigs that were anchored with 1443 molecular markers, providing a major resource for genetic and genomic studies. This physical map establishes a template for the remaining wheat chromosomes and demonstrates the feasibility of constructing physical maps in large, complex, polyploid genomes with a chromosome-based approach.


Proceedings of the National Academy of Sciences of the United States of America | 2013

A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor

Ming-Cheng Luo; Yong Q. Gu; Frank M. You; Karin R. Deal; Yaqin Ma; Yuqin Hu; Naxin Huo; Yi Wang; Ji-Rui Wang; Shiyong Chen; Chad M. Jorgensen; Yong Zhang; Patrick E. McGuire; Shiran Pasternak; Joshua C. Stein; Doreen Ware; Melissa Kramer; W. Richard McCombie; Shahryar F. Kianian; Mihaela Martis; Klaus F. X. Mayer; Sunish K. Sehgal; Wanlong Li; Bikram S. Gill; Michael W. Bevan; Hana Šimková; Jaroslav Doležel; Song Weining; Gerard R. Lazo; Olin D. Anderson

The current limitations in genome sequencing technology require the construction of physical maps for high-quality draft sequences of large plant genomes, such as that of Aegilops tauschii, the wheat D-genome progenitor. To construct a physical map of the Ae. tauschii genome, we fingerprinted 461,706 bacterial artificial chromosome clones, assembled contigs, designed a 10K Ae. tauschii Infinium SNP array, constructed a 7,185-marker genetic map, and anchored on the map contigs totaling 4.03 Gb. Using whole genome shotgun reads, we extended the SNP marker sequences and found 17,093 genes and gene fragments. We showed that collinearity of the Ae. tauschii genes with Brachypodium distachyon, rice, and sorghum decreased with phylogenetic distance and that structural genome evolution rates have been high across all investigated lineages in subfamily Pooideae, including that of Brachypodieae. We obtained additional information about the evolution of the seven Triticeae chromosomes from 12 ancestral chromosomes and uncovered a pattern of centromere inactivation accompanying nested chromosome insertions in grasses. We showed that the density of noncollinear genes along the Ae. tauschii chromosomes positively correlates with recombination rates, suggested a cause, and showed that new genes, exemplified by disease resistance genes, are preferentially located in high-recombination chromosome regions.


Genetics | 2004

Multiple Loci and Epistases Control Genetic Variation for Seed Dormancy in Weedy Rice (Oryza sativa)

Xing You Gu; Shahryar F. Kianian; Michael E. Foley

Weedy rice has much stronger seed dormancy than cultivated rice. A wild-like weedy strain SS18-2 was selected to investigate the genetic architecture underlying seed dormancy, a critical adaptive trait in plants. A framework genetic map covering the rice genome was constructed on the basis of 156 BC1 [EM93-1 (nondormant breeding line)//EM93-1/SS18-2] individuals. The mapping population was replicated using a split-tiller technique to control and better estimate the environmental variation. Dormancy was determined by germination of seeds after 1, 11, and 21 days of after-ripening (DAR). Six dormancy QTL, designated as qSDS-4, -6, -7-1, -7-2, -8, and -12, were identified. The locus qSDS-7-1 was tightly linked to the red pericarp color gene Rc. A QTL × DAR interaction was detected for qSDS-12, the locus with the largest main effect at 1, 11, and 21 DAR (R2 = 0.14, 0.24, and 0.20, respectively). Two, three, and four orders of epistases were detected with four, six, and six QTL, respectively. The higher-order epistases strongly suggest the presence of genetically complex networks in the regulation of variation for seed dormancy in natural populations and make it critical to select for a favorable combination of alleles at multiple loci in positional cloning of a target dormancy gene.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Synteny perturbations between wheat homoeologous chromosomes caused by locus duplications and deletions correlate with recombination rates

Eduard Akhunov; Alina Akhunova; A. M. Linkiewicz; Jorge Dubcovsky; David Hummel; Gerry Lazo; Shiaoman Chao; Olin D. Anderson; Jacques David; L. L. Qi; B. Echalier; Bikram S. Gill; Miftahudin; J. Perry Gustafson; Mauricio La Rota; Mark E. Sorrells; Deshui Zhang; Henry T. Nguyen; Venugopal Kalavacharla; Khwaja Hossain; Shahryar F. Kianian; Junhua Peng; Nora L. V. Lapitan; Emily J. Wennerlind; Vivienne Nduati; James A. Anderson; Deepak Sidhu; Kulvinder S. Gill; Patrick E. McGuire; Calvin O. Qualset

Loci detected by Southern blot hybridization of 3,977 expressed sequence tag unigenes were mapped into 159 chromosome bins delineated by breakpoints of a series of overlapping deletions. These data were used to assess synteny levels along homoeologous chromosomes of the wheat A, B, and D genomes, in relation to both bin position on the centromere-telomere axis and the gradient of recombination rates along chromosome arms. Synteny level decreased with the distance of a chromosome region from the centromere. It also decreased with an increase in recombination rates along the average chromosome arm. There were twice as many unique loci in the B genome than in the A and D genomes, and synteny levels between the B genome chromosomes and the A and D genome homoeologues were lower than those between the A and D genome homoeologues. These differences among the wheat genomes were attributed to differences in the mating systems of wheat diploid ancestors. Synteny perturbations were characterized in 31 paralogous sets of loci with perturbed synteny. Both insertions and deletions of loci were detected and both preferentially occurred in high recombination regions of chromosomes.


Theoretical and Applied Genetics | 1999

Association of a major groat oil content QTL and an acetyl-CoA carboxylase gene in oat

Shahryar F. Kianian; M. A. Egli; R. L. Phillips; H. W. Rines; David A. Somers; Burle G. Gengenbach; Francis H. Webster; Suzanne M. Livingston; S. Groh; L. S. O'Donoughue; Mark E. Sorrells; D. M. Wesenberg; D. D. Stuthman; R. G. Fulcher

Abstract Oat groats are unique among cereals for the high level and the embryo-plus-endosperm localization of lipids. Genetic manipulation of groat quality traits such as oil is desired for optimizing the value of oat in human and livestock diets. A locus having a major effect on oil content in oat groats was located on linkage group 11 by single-factor analysis of variance, simple interval mapping and simplified composite interval mapping. A partial oat cDNA clone for plastidic acetyl-CoA carboxylase (ACCase), which catalyzes the first committed step in de novo fatty acid synthesis, identified a polymorphism linked to this major QTL. Similar QTL and ACCase locus placements were obtained with two recombinant inbred populations, ‘Kanota’בOgle’ (KO) and ‘Kanota’בMarion’ (KM), containing 137 and 139 individual lines, respectively. By having a common parent these populations provide biological replication of the results in that significant genomic regions should be evident in analyses of multiple cross combinations. The KO population was mapped with 150 RFLP loci distributed over the genome and was grown in five diverse environments (locations and years) for measurement of groat oil content. The KM population was mapped with 60 RFLP loci and grown in three environments. The QTL linked to AccaseA on linkage group 11 accounted for up to 48% of the phenotypic variance for groat oil content. These results provide strong support for the hypothesis that ACCase has a major role in determining groat oil content. Other QTLs were identified in both populations which accounted for an additional 10–20% of the phenotypic variance.


Euphytica | 2004

Mapping genes for grain protein concentration and grain yield on chromosome 5B of Triticum turgidum (L.) var. dicoccoides

J.L. Gonzalez-Hernandez; E. M. Elias; Shahryar F. Kianian

Grain protein concentration (GPC) is an important quality factor in durum wheat [Triticum turgidum (L.) var. durum]. Due to the strong environmental influence on GPC, molecular markers linked to quantitative trait loci (QTL) affecting GPC have the potential to be valuable in wheat breeding programs. Various quantitative traits in a population of 133 recombinant inbred chromosome lines were studied in replicated trials at three locations in North Dakota. Segregation for GPC, 1000-kernel weight, gluten strength, heading date, and plant height was observed. By relating phenotypic data to a linkage map obtained from the same population, three QTL affecting GPC, and one affecting yield were identified. The genotypic coefficients of determination for both traits were high.


Genetics | 2006

High-Resolution Radiation Hybrid Map of Wheat Chromosome 1D

Venu Kalavacharla; Khwaja Hossain; Yong Gu; Oscar Riera-Lizarazu; M. Isabel Vales; Suresh Bhamidimarri; J. L. Gonzalez-Hernandez; Schivcharan S. Maan; Shahryar F. Kianian

Physical mapping methods that do not rely on meiotic recombination are necessary for complex polyploid genomes such as wheat (Triticum aestivum L.). This need is due to the uneven distribution of recombination and significant variation in genetic to physical distance ratios. One method that has proven valuable in a number of nonplant and plant systems is radiation hybrid (RH) mapping. This work presents, for the first time, a high-resolution radiation hybrid map of wheat chromosome 1D (D genome) in a tetraploid durum wheat (T. turgidum L., AB genomes) background. An RH panel of 87 lines was used to map 378 molecular markers, which detected 2312 chromosome breaks. The total map distance ranged from ∼3,341 cR35,000 for five major linkage groups to 11,773 cR35,000 for a comprehensive map. The mapping resolution was estimated to be ∼199 kb/break and provided the starting point for BAC contig alignment. To date, this is the highest resolution that has been obtained by plant RH mapping and serves as a first step for the development of RH resources in wheat.


G3: Genes, Genomes, Genetics | 2011

Mixed Model Association Mapping for Fusarium Head Blight Resistance in Tunisian-Derived Durum Wheat Populations

Farhad Ghavami; E. M. Elias; Sujan Mamidi; Omid Ansari; Mehdi Sargolzaei; Tika B. Adhikari; Mohamed Mergoum; Shahryar F. Kianian

Sources of resistance to Fusarium head blight (FHB) in wheat are mostly restricted to Chinese hexaploid genotypes. The effort to incorporate the resistance from hexaploid wheat or wild relatives to cultivated durum wheat (Triticum turgidum L. var. durum Desf.) have not been successful in providing resistance to the level of the donor parents. In this study, we used 171 BC1F6 and 169 BC1F7 lines derived from crossing of four Tunisian tetraploid sources of resistance (Tun7, Tun18, Tun34, Tun36) with durum cultivars ‘Ben,’ ‘Maier,’ ‘Lebsock,’ and ‘Mountrail’ for association studies. The Tun18 and Tun7 FHB resistances were found to be comparable to the best hexaploid wheat sources. A new significant QTL for FHB resistance was identified on the long arm of chromosome 5B (Qfhs.ndsu-5BL) with both association and classical QTL mapping analysis. Linkage disequilibrium (LD) blocks extending up to 40 cM were evident in these populations. The linear mixed model considering the structure (Q or P) and the kinship matrix (KT) estimated by restricted maximum likelihood (REML) was identified as the best for association studies in a mixture of wheat populations from a breeding program. The results of association mapping analysis also demonstrated a region on the short arm of chromosome 3B as potentially linked to FHB resistance. This region is in proximity of major FHB resistance gene fhb1 reported in hexaploid wheat. A possibility of having susceptibility or suppressor of resistance gene(s) on durum wheat chromosome 2A was further confirmed in this material, explaining the problem in developing resistant genotypes without counter selection against this region.


Phytopathology | 2006

Identification and Molecular Mapping of a Gene Conferring Resistance to Pyrenophora tritici-repentis Race 3 in Tetraploid Wheat

Pawan K. Singh; J. L. Gonzalez-Hernandez; Mohamed Mergoum; S. Ali; Tika B. Adhikari; Shahryar F. Kianian; E. M. Elias; G. R. Hughes

ABSTRACT Race 3 of the fungus Pyrenophora tritici-repentis, causal agent of tan spot, induces differential symptoms in tetraploid and hexaploid wheat, causing necrosis and chlorosis, respectively. This study was conducted to examine the genetic control of resistance to necrosis induced by P. tritici-repentis race 3 and to map resistance genes identified in tetraploid wheat (Triticum turgidum). A mapping population of recombinant inbred lines (RILs) was developed from a cross between the resistant genotype T. tur-gidum no. 283 (PI 352519) and the susceptible durum cv. Coulter. Based on the reactions of the Langdon-T. dicoccoides (LDN[DIC]) disomic substitution lines, chromosomal location of the resistance genes was determined and further molecular mapping of the resistance genes for race 3 was conducted in 80 RILs of the cross T. turgidum no. 283/Coulter. Plants were inoculated at the two-leaf stage and disease reaction was assessed 8 days after inoculation based on lesion type. Disease reaction of the LDN(DIC) lines and molecular mapping on the T. turgidum no. 283/Coulter population indicated that the gene, designated tsn2, conditioning resistance to race 3 is located on the long arm of chromosome 3B. Genetic analysis of the F(2) generation and of the F(4:5) and F(6:7) families indicated that a single recessive gene controlled resistance to necrosis induced by race 3 in the cross studied.


Theoretical and Applied Genetics | 2003

Detection of QTL linked to Fusarium head blight resistance in Sumai 3-derived North Dakota bread wheat lines.

I. A. del Blanco; R. C. Frohberg; R. W. Stack; William A. Berzonsky; Shahryar F. Kianian

Abstract.During the past decade Fusarium head blight (FHB) caused by Fusarium graminearum Schwabe has resulted in severe grain yield and quality losses of wheat (Triticum aestivum L.) in the Northern Great Plains of the U.S. Given the complexity of breeding for FHB resistance, molecular markers associated with this trait will be valuable in accelerating efforts to breed resistant cultivars. The objective of this study was to identify molecular markers linked to quantitative trait loci (QTL) for FHB resistance in wheat using a set of lines obtained by several cycles of crossing to North Dakota adapted genotypes, which derived their resistance from cv. Sumai 3. Microsatellite markers spanning the wheat genome were used to screen parents and derived lines. Polymorphisms for parental alleles were compared to disease scores for Type II resistance. The probability of linkage between markers and introgressed resistance genes was calculated using a binomial probability formula based on the assumption that a molecular marker at a specific distance from the introgressed gene, in a near-isogenic line (NIL), will carry the donor-parent allele as a function of the distance between marker and gene and the number of backcrosses/selfs performed in deriving the NIL. Microsatellite loci Xgwm533 and Xgwm274 were significantly associated with QTL for FHB resistance.

Collaboration


Dive into the Shahryar F. Kianian's collaboration.

Top Co-Authors

Avatar

Ajay Kumar

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Mohamed Mergoum

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

E. M. Elias

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Gerard R. Lazo

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Khwaja Hossain

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Shiaoman Chao

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Farhad Ghavami

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge