Shakeel Ahmad Anjum
University of Agriculture, Faisalabad
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shakeel Ahmad Anjum.
Frontiers in Plant Science | 2017
Shakeel Ahmad Anjum; Umair Ashraf; Mohsin Tanveer; Imran Khan; Saddam Hussain; Babar Shahzad; Ali Zohaib; Farhat Abbas; Muhammad Saleem; Iftikhar Ali; Long C. Wang
Consequences of drought stress in crop production systems are perhaps more deleterious than other abiotic stresses under changing climatic scenarios. Regulations of physio-biochemical responses of plants under drought stress can be used as markers for drought stress tolerance in selection and breeding. The present study was conducted to appraise the performance of three different maize hybrids (Dong Dan 80, Wan Dan 13, and Run Nong 35) under well-watered, low, moderate and SD conditions maintained at 100, 80, 60, and 40% of field capacity, respectively. Compared with well-watered conditions, drought stress caused oxidative stress by excessive production of reactive oxygen species (ROS) which led to reduced growth and yield formation in all maize hybrids; nevertheless, negative effects of drought stress were more prominent in Run Nong 35. Drought-induced osmolyte accumulation and strong enzymatic and non-enzymatic defense systems prevented the severe damage in Dong Dan 80. Overall performance of all maize hybrids under drought stress was recorded as: Dong Dan 80 > Wan Dan 13 > Run Nong 35 with 6.39, 7.35, and 16.55% yield reductions. Consequently, these biochemical traits and differential physiological responses might be helpful to develop drought tolerance genotypes that can withstand water-deficit conditions with minimum yield losses.
Environmental Science and Pollution Research | 2015
Umair Ashraf; Adam Sheka Kanu; Zhaowen Mo; Saddam Hussain; Shakeel Ahmad Anjum; Imran Khan; Rana Nadeem Abbas; Xiangru Tang
Lead (Pb) is a major environmental pollutant that affects plant morpho-physiological and biochemical attributes. Its higher levels in the environment are not only toxic to human beings but also harmful for plants and soil microbes. We have reviewed the uptake, translocation, and accumulation mechanisms of Pb and its toxic effects on germination, growth, yield, nutrient relation, photosynthesis, respiration, oxidative damage, and antioxidant defense system of rice. Lead toxicity hampers rice germination, root/shoot length, growth, and final yield. It reduces nutrient uptake through roots, disrupts chloroplastic ultrastructure and cell membrane permeability, induces alterations in leaves respiratory activities, produces reactive oxygen species (ROS), and triggers some enzyme and non-enzymatic antioxidants (as defense to oxidative damage). In the end, biochar amendments and phytoremediation technologies have been proposed as soil remediation approaches for Pb tainted soils.
Frontiers in Plant Science | 2017
Shah Fahad; Ali Ahsan Bajwa; Usman Nazir; Shakeel Ahmad Anjum; Ayesha Farooq; Ali Zohaib; Sehrish Sadia; Wajid Nasim; S. W. Adkins; Shah Saud; Muhammad Zahid Ihsan; Hesham F. Alharby; Chao Wu; Depeng Wang; Jianliang Huang
Abiotic stresses are one of the major constraints to crop production and food security worldwide. The situation has aggravated due to the drastic and rapid changes in global climate. Heat and drought are undoubtedly the two most important stresses having huge impact on growth and productivity of the crops. It is very important to understand the physiological, biochemical, and ecological interventions related to these stresses for better management. A wide range of plant responses to these stresses could be generalized into morphological, physiological, and biochemical responses. Interestingly, this review provides a detailed account of plant responses to heat and drought stresses with special focus on highlighting the commonalities and differences. Crop growth and yields are negatively affected by sub-optimal water supply and abnormal temperatures due to physical damages, physiological disruptions, and biochemical changes. Both these stresses have multi-lateral impacts and therefore, complex in mechanistic action. A better understanding of plant responses to these stresses has pragmatic implication for remedies and management. A comprehensive account of conventional as well as modern approaches to deal with heat and drought stresses have also been presented here. A side-by-side critical discussion on salient responses and management strategies for these two important abiotic stresses provides a unique insight into the phenomena. A holistic approach taking into account the different management options to deal with heat and drought stress simultaneously could be a win-win approach in future.
Plant Physiology and Biochemistry | 2016
Meijuan Li; Umair Ashraf; Hua Tian; Zhaowen Mo; Shenggang Pan; Shakeel Ahmad Anjum; Meiyang Duan; Xiangru Tang
Micro-nutrient application is essential for normal plant growth while a little is known about manganese (Mn)-induced regulations in morpho-physiological attributes, aroma formation and enzyme involved in 2-acetyl-1-pyrroline (2-AP) biosynthesis in aromatic rice. Present study aimed to examine the influence of four levels of Mn i.e., Mn1 (100 mg MnSO4 pot(-1)), Mn2 (150 mg MnSO4 pot(-1)), Mn3 (200 mg MnSO4 pot(-1)), and Mn4 (250 mg MnSO4 pot(-1)) on the growth, yield formation, quality characters, rice aroma and enzyme involved in 2-acetyl-1-pyrroline biosynthesis in two fragrant rice cultivars i.e., Meixiangzhan and Nongxiang 18. Pots without Mn application were served as control (Ck). Each pot contained 15 kg of soil. Effects on agronomic characters, quality attributes, 2-AP contents and enzymes involved in 2-AP biosynthesis have been studied in early and late season rice. Results depicted that Mn improved rice growth, yield and related characters, and some quality attributes significantly. It further up-regulated proline, pyrroline-5-carboxylic acid (P5C) (precursors of 2-AP), soluble proteins and activities of proline dehydrogenase (ProDH), Δ(1) pyrroline-5-carboxylic acid synthetase (P5CS) ornithine aminotransferase (OAT) that led to enhanced 2-AP production in rice grains. Moreover, higher Mn levels resulted in increased grain Mn contents in both rice cultivars. Along with growth and yield improvement, Mn application significantly improved rice aromatic contents. Overall, Nongxiang 18 accumulated more 2-AP contents than Meixiangzhan in both seasons under Mn application. This study further explored the importance of Mn in rice aroma formation and signifies that micro-nutrients can play significant roles in rice aroma synthesis; however, intensive studies at molecular levels are still needed to understand the exact mechanisms of Mn to improve rice aroma formation.
Plant Physiology and Biochemistry | 2016
Babar Shahzad; Mohsin Tanveer; Waseem Hassan; Adnan Noor Shah; Shakeel Ahmad Anjum; Sardar Alam Cheema; Iftikhar Ali
Lithium (Li) is a naturally occurring element; however, it is one of the non-essential metals for life. Lithium is becoming a serious matter of discussion for the people who do research on trace metals and environmental toxicity in plants. Due to limited information available regarding its mobility from soil to plants, the adverse effects of Li toxicity to plants are still unclear. This article briefly discusses issues around Li, its role and its essentiality in plants and research directions that may assist in inter-disciplinary studies to evaluate the importance of Lis toxicity. Further, potential remediation approaches will also be highlighted in this review. Briefly, Li influenced the growth of plants in both stimulation and reduction ways, depending on the concentration of Li in growth medium. On the negative side, Li reduces the plant growth by interrupting numerous physiological processes and altering metabolism in plant. The contamination of soil by Li is becoming a serious problem, which might be a threat for crop production in the near future. Additionally, lack of considerable information about the tolerance mechanisms of plants further intensifies the situation. Therefore, future research should emphasize in finding prominent and approachable solutions to minimize the entry of Li from its sources (especially from Li batteries) into the soil and food chain.
African Journal of Biotechnology | 2011
Shakeel Ahmad Anjum; Xiao-yu Xie; Muhammad Farooq; Longchang Wang; Lan-lan Xue; Muhammad Shahbaz; Jalaladeen Salhab
Drought is considered as one of the major constraints to crop production worldwide. Methyl jasmonate (MJ) is a plant-signaling molecule that elicits a wide variety of plant responses ranging from morphological to molecular level. A pot-culture study was undertaken to investigate the possible role of MJ-treatment on growth, gas exchange and chlorophyll contents in soybean (Glycine max L. Merrill.) plants subjected to water stress. The soybean plants were grown under normal water supply conditions till blooming and were then subjected to moisture stress by withholding water followed by foliar application of MJ at the rate of 50 μM. Drought stress severely hampered the growth, leaf gas-exchange attributes as well as the photosynthetic pigment contents. It was evident from the experimental results that, MJ-treatment led to further impairment in growth by inhibiting the leaf gas exchange attributes and chlorophyll contents. It is worth noted that, MJ-treatment also hampered the performance of soybean crop under well-watered conditions. In all, MJ-treatment appeared to arrest the growth, impaired leaf gas-exchange attributes and caused the loss of chlorophyll contents of soybean plants under water deficit conditions. Key words : Chlorophyll contents, drought stress, growth, gas exchange, soybean (Glycine max L. Merrill.).
Environmental Science and Pollution Research | 2017
Mohsin Tanveer; Shakeel Ahmad Anjum; Saddam Hussain; Artemi Cerdà; Umair Ashraf
Climate change, soil degradation, and depletion of natural resources are becoming the most prominent challenges for crop productivity and environmental sustainability in modern agriculture. In the scenario of conventional farming system, limited chances are available to cope with these issues. Relay cropping is a method of multiple cropping where one crop is seeded into standing second crop well before harvesting of second crop. Relay cropping may solve a number of conflicts such as inefficient use of available resources, controversies in sowing time, fertilizer application, and soil degradation. Relay cropping is a complex suite of different resource-efficient technologies, which possesses the capability to improve soil quality, to increase net return, to increase land equivalent ratio, and to control the weeds and pest infestation. The current review emphasized relay cropping as a tool for crop diversification and environmental sustainability with special focus on soil. Briefly, benefits, constraints, and opportunities of relay cropping keeping the goals of higher crop productivity and sustainability have also been discussed in this review. The research and knowledge gap in relay cropping was also highlighted in order to guide the further studies in future.
Photosynthetica | 2015
Chengjian Huang; G. Wei; Yucheng Jie; J.-J. Xu; S. Y. Zhao; Longchang Wang; Shakeel Ahmad Anjum
Ramie (Boehmeria nivea L.) is an important crop that serves as fine fiber material, high protein feedstuff, and valuable herbal medicine in China. However, increasing salinity in soil limits the productivity. We investigated in a greenhouse experiment responses to salinity in two ramie cultivars, Chuanzhu-12 (salt-tolerant cultivar, ST) and Xiangzhu-2 (salt-sensitive cultivar, SS), to elucidate the salt tolerance mechanism of this species. Salinity stress substantially reduced both chlorophyll and carotenoid contents. In addition, net photosynthesis, transpiration rate, stomatal conductance, intercellular CO2 concentration, and the ratio of intercellular CO2 to ambient CO2 were affected, less in ST. Nevertheless, salinity stress markedly improved water use efficiency and intrinsic water use efficiency in both species. Moreover, relative water contents, soluble proteins, and catalase activity were substantially impaired, while proline accumulation and superoxide dismutase activity were enhanced substantially, more in ST. Furthermore, noteworthy increase in peroxidase activity and decrease in malondialdehyde content was recorded in ST, whereas, in SS, these attributes changed conversely. Overall, the cultivar ST exhibited salt tolerance due to its higher photosynthetic capacity, chlorophyll content, antioxidative enzyme activity, and nonenzymatic antioxidants, as well as reduced lipid peroxidation and maintenance of the tissue water content. This revealed the salt tolerance mechanism of ramie plants for adaptation to salt affected soil.
Chilean Journal of Agricultural Research | 2016
Jianhang Niu; Shakeel Ahmad Anjum; Ran Wang; Jinhuan Li; Meiru Liu; Jixuan Song; Ali Zohaib; Jun Lv; Sangen Wang; Xuefeng Zong
Plant growth regulating substances are involved in the physiological and metabolic processes of plants and enable them to cope with numerous environmental stresses. The effect of exogenously applied brassinolide (BR) with various concentrations (0.01, 0.1, and 1.0 mg L -1 ) was studied on morphological and physiological traits of Leymus chinensis (Trin.) Tzvelev under room and high temperatures in pots. The experimental results revealed that high temperature stress substantially perturbed growth, photosynthetic pigments, and root activity of L. chinensis; however, the deleterious effects of high temperature were partially ameliorated by the foliar application of BR. Compared to room temperature, high temperature stress decreased the plant height, leaf area, plant fresh and dry weight, chlorophyll a and b content, chlorophyll a/b ratio as well as root activity, while exacerbated the membrane damage as indicated by enhanced production of malondialdehyde (MDA). Accumulation of proline content, soluble protein and sugar content in L. chinensis improved by heat stress, compared with normal temperature; application of BR further improved their production thus aiding in the attainment of tolerance against heat stress. Elevated levels of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) were observed under heat stress compared to room temperature, however, application of BR further proved beneficial in this regard. Our results indicated that BR could improve the growth and development of L. chinensis by enhancing the biosynthesis of photosynthetic pigments, osmolytes and antioxidant enzymes system in plants under both room and high temperature.
Pedosphere | 2017
Shakeel Ahmad Anjum; Umair Ashraf; Imran Khan; Mohsin Tanveer; Muhammad Shahid; Abdul Shakoor; Longchang Wang
Agricultural production systems are immensely exposed to different environmental stresses in which heavy metal stress receives serious concerns. This study was conducted to explore the deleterious effects of different chromium (Cr) stress levels, i.e., 0, 30, 60, 90, 120, and 150 μmol L−1, on two maize genotypes, Wandan 13 and Runnong 35. Both genotypes were evaluated by measuring their growth and yield characteristics, Cr accumulation in different plant tissues, alterations in osmolyte accumulation, generation of reactive oxygen species (ROS), and anti-oxidative enzyme activity to scavenge ROS. The results showed that Cr stress decreased the leaf area, cob formation, 100-grain weight, shoot fresh biomass, and yield formation, while Cr accumulation in different maize tissues was found in the order of roots > leaves > stem > seeds in both genotypes. The increased Cr toxicity resulted in higher free proline, soluble sugars and total phenolic contents, and lower soluble protein contents. However, enhanced lipid peroxidation was noticed in the forms of malondialdehyde, hydrogen peroxide (H2O2) and thiobarbituric acid reactive substance accumulation, and electrolyte leakage. The hyperactivity of superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, especially glutathione peroxidase and glutathione reductase indicated that these anti-oxidative enzymes had a central role in protecting maize from Cr toxicity, especially for Wandan 13. Moreover, higher uptake and less translocation of Cr contents into the grains of Wandan 13 implied its importance as a potential candidate against soil Cr pollution.