Umair Ashraf
South China Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Umair Ashraf.
Frontiers in Plant Science | 2017
Shakeel Ahmad Anjum; Umair Ashraf; Mohsin Tanveer; Imran Khan; Saddam Hussain; Babar Shahzad; Ali Zohaib; Farhat Abbas; Muhammad Saleem; Iftikhar Ali; Long C. Wang
Consequences of drought stress in crop production systems are perhaps more deleterious than other abiotic stresses under changing climatic scenarios. Regulations of physio-biochemical responses of plants under drought stress can be used as markers for drought stress tolerance in selection and breeding. The present study was conducted to appraise the performance of three different maize hybrids (Dong Dan 80, Wan Dan 13, and Run Nong 35) under well-watered, low, moderate and SD conditions maintained at 100, 80, 60, and 40% of field capacity, respectively. Compared with well-watered conditions, drought stress caused oxidative stress by excessive production of reactive oxygen species (ROS) which led to reduced growth and yield formation in all maize hybrids; nevertheless, negative effects of drought stress were more prominent in Run Nong 35. Drought-induced osmolyte accumulation and strong enzymatic and non-enzymatic defense systems prevented the severe damage in Dong Dan 80. Overall performance of all maize hybrids under drought stress was recorded as: Dong Dan 80 > Wan Dan 13 > Run Nong 35 with 6.39, 7.35, and 16.55% yield reductions. Consequently, these biochemical traits and differential physiological responses might be helpful to develop drought tolerance genotypes that can withstand water-deficit conditions with minimum yield losses.
Environmental Science and Pollution Research | 2015
Umair Ashraf; Adam Sheka Kanu; Zhaowen Mo; Saddam Hussain; Shakeel Ahmad Anjum; Imran Khan; Rana Nadeem Abbas; Xiangru Tang
Lead (Pb) is a major environmental pollutant that affects plant morpho-physiological and biochemical attributes. Its higher levels in the environment are not only toxic to human beings but also harmful for plants and soil microbes. We have reviewed the uptake, translocation, and accumulation mechanisms of Pb and its toxic effects on germination, growth, yield, nutrient relation, photosynthesis, respiration, oxidative damage, and antioxidant defense system of rice. Lead toxicity hampers rice germination, root/shoot length, growth, and final yield. It reduces nutrient uptake through roots, disrupts chloroplastic ultrastructure and cell membrane permeability, induces alterations in leaves respiratory activities, produces reactive oxygen species (ROS), and triggers some enzyme and non-enzymatic antioxidants (as defense to oxidative damage). In the end, biochar amendments and phytoremediation technologies have been proposed as soil remediation approaches for Pb tainted soils.
Chemosphere | 2017
Umair Ashraf; Xiangru Tang
Present study was planned to assess the yield and quality responses, plant physio-biochemical characters and Pb distribution pattern in two aromatic rice cultivars viz., Guixiangzhan (GXZ) and Nongxiang-18 (NX-18) under four different Pb-levels viz., control (0), low (400), medium (800) and high (1200) mg kg-1of soil. Results revealed that Pb toxicity increased H2O2, lipid peroxidation and electrolyte leakage while inhibited photosynthetic pigments production, but such increment was higher in NX-18 than GXZ. Furthermore, Pb toxicity variably affected protein, proline and soluble sugars and the activities of enzymatic antioxidants viz., superoxide dismutase (SOD), peroxidases (POD), catalases (CAT) and ascorbate peroxidases (APX) and non-enzymatic anti-oxidants viz., reduced glutathione (GSH) and oxidized glutathione (GSSG) in both rice cultivars. The reductions in osmolyte accumulation and antioxidant activities were more severe in NX-18 than GXZ. Pb toxicity severely reduced yield and quality related attributes and plant biomass accumulation; however the reductions were more apparent NX-18 than GXZ. Furthermore, NX-18 accumulated less Pb proportions in roots (∼84%), and transferred more towards shoot, leaves, ears (at panicle heading (PH)) and grains (at maturity (MAT)) than GXZ (∼91% root Pb proportions). Hence, the ability of GXZ to retain higher Pb contents in roots and less towards upper plant parts, higher osmolyte accumulation and antioxidant activities and less yield reduction as compare to NX-18 might be an adaptive response of GXZ under Pb toxicity.
Plant Physiology and Biochemistry | 2016
Meijuan Li; Umair Ashraf; Hua Tian; Zhaowen Mo; Shenggang Pan; Shakeel Ahmad Anjum; Meiyang Duan; Xiangru Tang
Micro-nutrient application is essential for normal plant growth while a little is known about manganese (Mn)-induced regulations in morpho-physiological attributes, aroma formation and enzyme involved in 2-acetyl-1-pyrroline (2-AP) biosynthesis in aromatic rice. Present study aimed to examine the influence of four levels of Mn i.e., Mn1 (100 mg MnSO4 pot(-1)), Mn2 (150 mg MnSO4 pot(-1)), Mn3 (200 mg MnSO4 pot(-1)), and Mn4 (250 mg MnSO4 pot(-1)) on the growth, yield formation, quality characters, rice aroma and enzyme involved in 2-acetyl-1-pyrroline biosynthesis in two fragrant rice cultivars i.e., Meixiangzhan and Nongxiang 18. Pots without Mn application were served as control (Ck). Each pot contained 15 kg of soil. Effects on agronomic characters, quality attributes, 2-AP contents and enzymes involved in 2-AP biosynthesis have been studied in early and late season rice. Results depicted that Mn improved rice growth, yield and related characters, and some quality attributes significantly. It further up-regulated proline, pyrroline-5-carboxylic acid (P5C) (precursors of 2-AP), soluble proteins and activities of proline dehydrogenase (ProDH), Δ(1) pyrroline-5-carboxylic acid synthetase (P5CS) ornithine aminotransferase (OAT) that led to enhanced 2-AP production in rice grains. Moreover, higher Mn levels resulted in increased grain Mn contents in both rice cultivars. Along with growth and yield improvement, Mn application significantly improved rice aromatic contents. Overall, Nongxiang 18 accumulated more 2-AP contents than Meixiangzhan in both seasons under Mn application. This study further explored the importance of Mn in rice aroma formation and signifies that micro-nutrients can play significant roles in rice aroma synthesis; however, intensive studies at molecular levels are still needed to understand the exact mechanisms of Mn to improve rice aroma formation.
PLOS ONE | 2016
Zhaowen Mo; Jinxia Huang; Di Xiao; Umair Ashraf; Meiyang Duan; Shenggang Pan; Hua Tian; Lizhong Xiao; Keyou Zhong; Xiangru Tang
Aromatic rice is highly prized by consumers worldwide due to its special aromatic character. 2-acetyl-1-pyrroline (2-AP) is considered to be the single most important volatile compound responsible for aroma in aromatic rice. The present study demonstrated the effects of 2-AP, zinc (Zn) and lanthanum (La) on the 2-AP concentration of detached aromatic rice panicles in vitro. Detached panicles from three well-known aromatic cultivars, Guixiangzhan, Pin14, and Pin 15, were cultured separately in basic culture medium supplemented with 2-AP, Zn and La, and 2-AP concentrations were assessed at 7 and 14 days after culture (DAC). The results show that supplementation of 2-AP, Zn and La in the basic culture medium significantly increases the accumulation of proline. 2-AP concentration and the activity of proline dehydrogenase (ProDH) were also increased in rice grains. Zn concentrations were also found to be higher when Zn was added to the basic culture medium, and La concentrations in grains were too low to be measured. Additionally, grain 2-AP concentrations were significantly and positively correlated with proline concentrations, ProDH activities in grains and 2-AP in culture medium. In summary, higher grain 2-AP concentrations might be due to Zn- and La-induced increases in proline concentrations and ProDH activities, as well as the direct uptake and transportation of 2-AP from the culture medium. Furthermore, application of both Zn and La might be helpful for improving aroma formation in rice. However, interactions of both these elements with the complex process of 2-AP formation remain to be explored.
Environmental Science and Pollution Research | 2017
Mohsin Tanveer; Shakeel Ahmad Anjum; Saddam Hussain; Artemi Cerdà; Umair Ashraf
Climate change, soil degradation, and depletion of natural resources are becoming the most prominent challenges for crop productivity and environmental sustainability in modern agriculture. In the scenario of conventional farming system, limited chances are available to cope with these issues. Relay cropping is a method of multiple cropping where one crop is seeded into standing second crop well before harvesting of second crop. Relay cropping may solve a number of conflicts such as inefficient use of available resources, controversies in sowing time, fertilizer application, and soil degradation. Relay cropping is a complex suite of different resource-efficient technologies, which possesses the capability to improve soil quality, to increase net return, to increase land equivalent ratio, and to control the weeds and pest infestation. The current review emphasized relay cropping as a tool for crop diversification and environmental sustainability with special focus on soil. Briefly, benefits, constraints, and opportunities of relay cropping keeping the goals of higher crop productivity and sustainability have also been discussed in this review. The research and knowledge gap in relay cropping was also highlighted in order to guide the further studies in future.
Frontiers in Plant Science | 2017
Umair Ashraf; Adam Sheka Kanu; Quanquan Deng; Zhaowen Mo; Shenggang Pan; Hua Tian; Xiangru Tang
Lead (Pb) caused interruptions with normal plant metabolism, crop yield losses and quality issues are of great concern. This study assessed the physio-biochemical responses, yield and grain quality traits and Pb distribution proportions in three different fragrant rice cultivars i.e., Meixiangzhan-2, Xinagyaxiangzhan and Basmati-385. Plants were exposed to 400, 800, and 1,200 ppm of Pb while pots without Pb were taken as control (0 ppm). Our results showed that Pb toxicity significantly (P < 0.05) reduced photosynthetic pigments (chlorophyll contents and carotenoids) and inducted oxidative stress with increased production of hydrogen peroxide (H2O2), malanodialdehyde (MDA) and leaves leachates; while such effects were more apparent in Xinagyaxiangzhan than other two rice cultivars. Pb stress differentially affected the production protein, proline and soluble sugars; however the production rates were higher at heading stage (HS) than maturity stage (MS). Furthermore, Pb stress altered superoxide dismutase (SOD), peroxidases (POD), catalases (CAT) and ascorbate peroxidases (APX) activities and glutathione (GSH) and oxidized glutathione (GSSG) production in all rice cultivars at both HS and MS. All Pb levels reduced the yield and yield components of all rice cultivars; nonetheless such reductions were observed highest in Xinagyaxiangzhan (69.12%) than Meixiangzhan-2 (58.05%) and Basmati-385 (46.27%) and resulted in grain quality deterioration. Significant and positive correlations among rice yields with productive tillers/pot and grains per panicle while negative with sterility percentage were also observed. In addition, all rice cultivars readily taken up the Pb contents from soil to roots and transported upward in different proportions with maximum in roots followed by stemss, leaves, ears and grains. Higher proportions of Pb contents in above ground plant parts in Xinagyaxiangzhan possibly lead to maximum losses in this cultivar than other two cultivars; while less damage in Basmati-385 might be related to strong anti-oxidative defense system and lower proportions of Pb contents in its aerial parts.
Pedosphere | 2017
Shakeel Ahmad Anjum; Umair Ashraf; Imran Khan; Mohsin Tanveer; Muhammad Shahid; Abdul Shakoor; Longchang Wang
Agricultural production systems are immensely exposed to different environmental stresses in which heavy metal stress receives serious concerns. This study was conducted to explore the deleterious effects of different chromium (Cr) stress levels, i.e., 0, 30, 60, 90, 120, and 150 μmol L−1, on two maize genotypes, Wandan 13 and Runnong 35. Both genotypes were evaluated by measuring their growth and yield characteristics, Cr accumulation in different plant tissues, alterations in osmolyte accumulation, generation of reactive oxygen species (ROS), and anti-oxidative enzyme activity to scavenge ROS. The results showed that Cr stress decreased the leaf area, cob formation, 100-grain weight, shoot fresh biomass, and yield formation, while Cr accumulation in different maize tissues was found in the order of roots > leaves > stem > seeds in both genotypes. The increased Cr toxicity resulted in higher free proline, soluble sugars and total phenolic contents, and lower soluble protein contents. However, enhanced lipid peroxidation was noticed in the forms of malondialdehyde, hydrogen peroxide (H2O2) and thiobarbituric acid reactive substance accumulation, and electrolyte leakage. The hyperactivity of superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, especially glutathione peroxidase and glutathione reductase indicated that these anti-oxidative enzymes had a central role in protecting maize from Cr toxicity, especially for Wandan 13. Moreover, higher uptake and less translocation of Cr contents into the grains of Wandan 13 implied its importance as a potential candidate against soil Cr pollution.
International Journal of Agriculture and Biology | 2016
M.B. Kargbo; Shenggang Pan; Zhaowen Mo; Zaiman Wang; Xiwen Luo; Hua Tian; Md. Faruque Hossain; Umair Ashraf; Xiangru Tang
Field experiment on deep placement of fertilizers was carried out using precision hill-drilling machine with the objective of determining super rice growth and photosynthesis characteristics, as well as grain quality in South China. With ‘no fertilizer’ as control, the four fertilizer combinations were 100 kg N ha, 100 kg N ha + 60 kg SiO2 ha, 125 kg N ha, and 125 kg N ha + 60 kg SiO2 ha. Super rice special fertilizer comprised 12.5% N, 6.0% P2O5, 10.0% K2O and 15% organic matter. The super rice varieties were Yuejingsimiao 2 (inbred) and Peizataifeng (hybrid) common in South China. The design was splitplot with three replications. Plant height, LAI, SPAD and net photosynthetic rate (NPR) were affected by both variety and fertilizer. Application of 100 kg N ha gave highest GS activity at booting 125 kg N ha resulted in a favorable GS activity from booting to full-heading. SPS activity at booting was highest with 125 kg N ha + 60 kg SiO2 ha. Application of 100 kg N ha + 60 kg SiO2 ha to Peizataifeng showed higher GS and SPS activity at booting, and gave the highest head rice rate. While milled rice yield was not, brown rice yield, head rice recovery, rice with chalkiness, and chalky ratio were affected by variety and fertilizer. Treatments were significantly different from each other in polished grain protein and amylose content. Yuejinsimiao 2 fertilized with 125 kg N ha + 60 kg SiO2 ha recorded the highest protein content and non-fertilized Peizataifeng the least. While Peizataifeng fertilized with 125 kg N ha accumulated the highest amount of amylose, Yuejinsimiao 2 fertilized with 100 kg ha + 60 kg SiO2 ha had the least. In hybrid Peizataifeng, grain amylose was lower with the silicon-added fertilizers. In inbred Yuejinsimiao 2, grain protein was least when no fertilizer was applied and it increased with addition of silicon and increase in N% of fertilizer. We concluded that deep application of rice special fertilizer can improve growth and photosynthesis characteristics, as well as the quality of super hybrid rice.
Ecotoxicology and Environmental Safety | 2018
Umair Ashraf; Saddam Hussain; Nadeem Akbar; Shakeel Ahmad Anjum; Waseem Hassan; Xiangru Tang
Rice cultivation in lead (Pb) polluted soils often leads to high Pb contents in rice grains. The present study investigated the dynamics of Pb uptake under different water regimes in two fragrant rice cultivars i.e., Guixiangzhan and Nongxiang-18. Results revealed that water dynamics regulated the antioxidant activities in both rice cultivars under Pb toxicity. Compared to continuous ponding (CP), taken as control, alternate wetting and drying (AWD) reduced the Pb contents in roots, stems, leaves, and grains up to 17%, 41%, 22%, and 52% in Guixiangzhan and 23%, 19%, 17%, and 37% in Nongxiang-18, respectively. Furthermore, AWD-treatments reduced paddy yield from 11% to 21% in Guixiangzhan and 11-33% in Nongxiang-18 under Pb toxicity. In conclusion, Pb loadings in fragrant rice can be regulated by effective water management and/or by controlling irrigation water at different growth stages. Special control measures or management is required to cultivate the rice in metal(loid)s polluted soils.