Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shan Chi is active.

Publication


Featured researches published by Shan Chi.


PLOS ONE | 2012

Complete Sequences of the Mitochondrial DNA of the Wild Gracilariopsis lemaneiformis and Two Mutagenic Cultivated Breeds (Gracilariaceae, Rhodophyta)

Lei Zhang; Xumin Wang; Hao Qian; Shan Chi; Cui Liu; Tao Liu

The complete mitochondrial DNA (mtDNA) of Gracilariopsis lemaneiformis was sequenced (25883 bp) and mapped to a circular model. The A+T composition was 72.5%. Forty six genes and two potentially functional open reading frames were identified. They include 24 protein-coding genes, 2 rRNA genes, 20 tRNA genes and 2 ORFs (orf60, orf142). There is considerable sequence synteny across the five red algal mtDNAs falling into Florideophyceae including Gr. lemaneiformis in this study and previously sequenced species. A long stem-loop and a hairpin structure were identified in intergenic regions of mt genome of Gr. lemaneiformis, which are believed to be involved with transcription and replication. In addition, the mtDNAs of two mutagenic cultivated breeds (“981” and “07-2”) were also sequenced. Compared with the mtDNA of wild Gr. lemaneiformis, the genome size and gene length and order of three strains were completely identical except nine base mutations including eight in the protein-coding genes and one in the tRNA gene. None of the base mutations caused frameshift or a premature stop codon in the mtDNA genes. Phylogenetic analyses based on mitochondrial protein-coding genes and rRNA genes demonstrated Gracilariopsis andersonii had closer phylogenetic relationship with its parasite Gracilariophila oryzoides than Gracilariopsis lemaneiformis which was from the same genus of Gracilariopsis.


Mitochondrial DNA | 2015

Complete mitochondrial genome of Undaria pinnatifida (Alariaceae, Laminariales, Phaeophyceae)

Tianyong Li; Jieqiong Qu; Yan-Jing Feng; Cui Liu; Shan Chi; Tao Liu

Abstract Undaria pinnatifida is one of the most important economic marine algae and key components of coastal ecosystems. Undaria pinnatifida owns a typical heteromorphic, diplohaplontic life cycle. We present the complete sequence of mitochondrial genome of U. pinnatifida, focusing on genome organization and phylogenetic relationship between different brown algae lineages. The size of U. pinnatifida mitochondrial DNA is 37,402 bp, including 3 rRNAs, 25 tRNAs, 35 proteins, as well as 3 ORFs. No intron is found and most genes are encoded on the H-strand. The phylogenetic trees (BI) constructed on 35 protein-coding genes from 17 species proved that Saccharina has a closer relationship with Laminaria than that with Undaria. The results supported the conclusion that Alariaceae is sister genus to the Laminariaceae. Above researches will facilitate the understanding of evolutionary relationship within brown algae.


Acta Oceanologica Sinica | 2014

De novo sequencing and comparative analysis of three red algal species of Family Solieriaceae to discover putative genes associated with carrageenan biosysthesis

Lipu Song; Shuangxiu Wu; Jing Sun; Liang Wang; Tao Liu; Shan Chi; Cui Liu; Xingang Li; Jinlong Yin; Xumin Wang; Jun Yu

Betaphycus gelatinus, Kappaphycus alvarezii and Eucheuma denticulatum of Family Solieriaceae, Order Gigartinales, Class Rhodophyceae are three important carrageenan-producing red algal species, which produce different types of carrageenans, beta (β)-carrageenan, kappa (κ)-carrageenan and iota (ι)-carrageenan. So far the carrageenan biosynthesis pathway is not fully understood and few information is about the Solieriaceae genome and transcriptome sequence. Here, we performed the de novo transcriptome sequencing, assembly, functional annotation and comparative analysis of these three commercial-valuable species using an Illumina short-sequencing platform Hiseq 2000 and bioinformatic software. Furthermore, we compared the different expression of some unigenes involved in some pathways relevant to carrageenan biosynthesis. We finally found 861 different expressed KEGG orthologs which contained a glycolysis/gluconeogenesis pathway (21 orthologs), carbon fixation in photosynthetic organisms (16 orthologs), galactose metabolism (5 orthologs), and fructose and mannose metabolism (9 orthologs) which are parts of the carbohydrate metabolism. We also found 8 different expressed KEGG orthologs for sulfur metabolism which might be importantly related to biosynthesis of different types of carrageenans. The results presented in this study provided valuable resources for functional genomics annotation and investigation of mechanisms underlying the biosynthesis of carrageenan in Family Solieriaceae.


PLOS ONE | 2015

Complete Plastid Genome of the Brown Alga Costaria costata (Laminariales, Phaeophyceae)

Lei Zhang; Xumin Wang; Tao Liu; Haiyang Wang; Guoliang Wang; Shan Chi; Cui Liu

Costaria costata is a commercially and industrially important brown alga. In this study, we used next-generation sequencing to determine the complete plastid genome of C. costata. The genome consists of a 129,947 bp circular DNA molecule with an A+T content of 69.13% encoding a standard set of six ribosomal RNA genes, 27 transfer RNA genes, and 137 protein-coding genes with two conserved open reading frames (ORFs). The overall genome structure of C. costata is nearly the same as those of Saccharina japonica and Undaria pinnatifida. The plastid genomes of these three algal species retain a strong conservation of the GTG start codon while infrequently using TGA as a stop codon. In this regard, they differ substantially from the plastid genomes of Ectocarpus siliculosus and Fucus vesiculosus. Analysis of the nucleic acid substitution rates of the Laminariales plastid genes revealed that the petF gene has the highest substitution rate and the petN gene contains no substitution over its complete length. The variation in plastid genes between C. costata and S. japonica is lower than that between C. costata and U. pinnatifida as well as that between U. pinnatifida and S. japonica. Phylogenetic analyses demonstrated that C. costata and U. pinnatifida have a closer genetic relationship. We also identified two gene length mutations caused by the insertion or deletion of repeated sequences, which suggest a mechanism of gene length mutation that may be one of the key explanations for the genetic variation in plastid genomes.


PLOS ONE | 2014

Phylogeny of C4-Photosynthesis Enzymes Based on Algal Transcriptomic and Genomic Data Supports an Archaeal/Proteobacterial Origin and Multiple Duplication for Most C4-Related Genes

Shan Chi; Shuangxiu Wu; Jun Yu; Xumin Wang; Xuexi Tang; Tao Liu

Both Calvin-Benson-Bassham (C3) and Hatch-Slack (C4) cycles are most important autotrophic CO2 fixation pathways on today’s Earth. C3 cycle is believed to be originated from cyanobacterial endosymbiosis. However, studies on evolution of different biochemical variants of C4 photosynthesis are limited to tracheophytes and origins of C4-cycle genes are not clear till now. Our comprehensive analyses on bioinformatics and phylogenetics of novel transcriptomic sequencing data of 21 rhodophytes and 19 Phaeophyceae marine species and public genomic data of more algae, tracheophytes, cyanobacteria, proteobacteria and archaea revealed the origin and evolution of C4 cycle-related genes. Almost all of C4-related genes were annotated in extensive algal lineages with proteobacterial or archaeal origins, except for phosphoenolpyruvate carboxykinase (PCK) and aspartate aminotransferase (AST) with both cyanobacterial and archaeal/proteobacterial origin. Notably, cyanobacteria may not possess complete C4 pathway because of the flawed annotation of pyruvate orthophosphate dikinase (PPDK) genes in public data. Most C4 cycle-related genes endured duplication and gave rise to functional differentiation and adaptation in different algal lineages. C4-related genes of NAD-ME (NAD-malic enzyme) and PCK subtypes exist in most algae and may be primitive ones, while NADP-ME (NADP-malic enzyme) subtype genes might evolve from NAD-ME subtype by gene duplication in chlorophytes and tracheophytes.


Acta Oceanologica Sinica | 2014

Transcriptome sequencing of essential marine brown and red algal species in China and its significance in algal biology and phylogeny

Shuangxiu Wu; Jing Sun; Shan Chi; Liang Wang; Xumin Wang; Cui Liu; Xingang Li; Jinlong Yin; Tao Liu; Jun Yu

Most phaeophytes (brown algae) and rhodophytes (red algae) dwell exclusively in marine habitats and play important roles in marine ecology and biodiversity. Many of these brown and red algae are also important resources for industries such as food, medicine and materials due to their unique metabolisms and metabolites. However, many fundamental questions surrounding their origins, early diversification, taxonomy, and special metabolisms remain unsolved because of poor molecular bases in brown and red algal study. As part of the 1 000 Plant Project, the marine macroalgal transcriptomes of 19 Phaeophyceae species and 21 Rhodophyta species from China’s coast were sequenced, covering a total of 2 phyla, 3 classes, 11 orders, and 19 families. An average of 2 Gb per sample and a total 87.3 Gb of RNA-seq raw data were generated. Approximately 15 000 to 25 000 unigenes for each brown algal sample and 5 000 to 10 000 unigenes for each red algal sample were annotated and analyzed. The annotation results showed obvious differences in gene expression and genome characteristics between red algae and brown algae; these differences could even be seen between multicellular and unicellular red algae. The results elucidate some fundamental questions about the phylogenetic taxonomy within phaeophytes and rhodophytes, and also reveal many novel metabolic pathways. These pathways include algal CO2 fixation and particular carbohydrate metabolisms, and related gene/gene family characteristics and evolution in brown and red algae. These findings build on known algal genetic information and significantly improve our understanding of algal biology, biodiversity, evolution, and potential utilization of these marine algae.


Acta Oceanologica Sinica | 2014

Endogenous viral elements in algal genomes

Liang Wang; Shuangxiu Wu; Tao Liu; Jing Sun; Shan Chi; Cui Liu; Xingang Li; Jinlong Yin; Xumin Wang; Jun Yu

Endogenous viral elements (EVEs) are host-genomic fragments originated from viral genomes. They have been found universally in animal and plant genomes. Here we carried out a systematic screening and analysis of EVEs in algal genomes and found that EVEs commonly exist in algal genomes. We classified the EVE fragments into three categories according to the length of EVE fragments. Due to the probability of sequence similarity by chance, we ignored the potential function of medium-length EVE fragments. However, longlength EVE fragments probably had capability to encode protein domains or even entire proteins, and some short-length EVE fragments had high similarity with host’s siRNA sequences and possibly served functions of small RNAs. Therefore, short and long EVE fragments might provide regulomic and proteomic novelty to the host’s metabolism and adaptation. We also found several EVE fragments shared by more than 3 algal genomes. By phylogenetic analysis of the shared EVEs and their corresponding species, we found that the integration of viral fragments into host genomes was an ancient event, possibly before the divergence of Chlorophytes and Ochrophytes. Our findings show that there is a frequent genetic flow from viruses to algal genomes. Moreover, study on algal EVEs shed light on the virus-host interaction in large timescale and could also help us understand the balance of marine ecosystems.


PLOS ONE | 2015

Complete Plastid Genome Sequence of the Brown Alga Undaria pinnatifida

Lei Zhang; Xumin Wang; Tao Liu; Guoliang Wang; Shan Chi; Cui Liu; Haiyang Wang

In this study, we fully sequenced the circular plastid genome of a brown alga, Undaria pinnatifida. The genome is 130,383 base pairs (bp) in size; it contains a large single-copy (LSC, 76,598 bp) and a small single-copy region (SSC, 42,977 bp), separated by two inverted repeats (IRa and IRb: 5,404 bp). The genome contains 139 protein-coding, 28 tRNA, and 6 rRNA genes; none of these genes contains introns. Organization and gene contents of the U. pinnatifida plastid genome were similar to those of Saccharina japonica. There is a co-linear relationship between the plastid genome of U. pinnatifida and that of three previously sequenced large brown algal species. Phylogenetic analyses of 43 taxa based on 23 plastid protein-coding genes grouped all plastids into a red or green lineage. In the large brown algae branch, U. pinnatifida and S. japonica formed a sister clade with much closer relationship to Ectocarpus siliculosus than to Fucus vesiculosus. For the first time, the start codon ATT was identified in the plastid genome of large brown algae, in the atpA gene of U. pinnatifida. In addition, we found a gene-length change induced by a 3-bp repetitive DNA in ycf35 and ilvB genes of the U. pinnatifida plastid genome.


Acta Oceanologica Sinica | 2014

Origin and evolution of alginate-c5-mannuronan-epimerase gene based on transcriptomic analysis of brown algae

Ren Wang; Xumin Wang; Yalan Zhang; Jun Yu; Tao Liu; Shengping Chen; Shan Chi

The coding product of alginate-c5-mannuronan-epimerase gene (algG gene) can catalyze the conversion of mannuronate to guluronate and determine the M/G ratio of alginate. Most of the current knowledge about genes involved in the alginate biosynthesis comes from bacterial systems. In this article, based on some algal and bacterial algG genes registered on GenBank and EMBL databases, we predicted 94 algG genes open reading frame (ORF) sequences of brown algae from the 1 000 Plant Transcriptome Sequencing Project (OneKP). By method of transcriptomic sequence analysis, gene structure and gene localization analysis, multiple sequence alignment and phylogenetic tree construction, we studied the algal algG gene family characteristics, the structure modeling and conserved motifs of AlgG protein, the origin of alginate biosynthesis and the variation incidents that might have happened during evolution in algae. Although there are different members in the algal algG gene family, almost all of them harbor the conserved epimerase region. Based on the phylogenetic analysis of algG genes, we proposed that brown algae acquired the alginate biosynthesis pathway from an ancient bacterium by horizontal gene transfer (HGT). Afterwards, followed by duplications, chromosome disorder, mutation or recombination during evolution, brown algal algG genes were divided into different types.


Acta Oceanologica Sinica | 2014

Transcriptome-wide evolutionary analysis on essential brown algae(Phaeophyceae)in China

Jing Sun; Liang Wang; Shuangxiu Wu; Xumin Wang; Jingfa Xiao; Shan Chi; Cui Liu; Lufeng Ren; Yuhui Zhao; Tao Liu; Jun Yu

Brown algae (Chromista, Ochrophyta, Phaeophyceae) are a large group of multicellular algae that play important roles in the ocean’s ecosystem and biodiversity. However, poor molecular bases for studying their phylogenetic evolutions and novel metabolic characteristics have hampered progress in the field. In this study, we sequenced the de novo transcriptome of 18 major species of brown algae in China, covering six orders and seven families, using the high-throughput sequencing platform Illumina HiSeq 2000. From the transcriptome data of these 18 species and publicly available genome data of Ectocarpus siliculosus and Phaeodactylum tricornutum, we identified 108 nuclear-generated orthologous genes and clarified the phylogenetic relationships among these brown algae based on a multigene method. These brown algae could be separated into two clades: Clade Ishigeales-Dictyotales and Clade Ectocarpales-Laminariales-Desmarestiale-Fucales. The former was at the base of the phylogenetic tree, indicating its early divergence, while the latter was divided into two branches, with Order Fucales diverging from Orders Ectocarpales, Laminariales, and Desmarestiale. In our analysis of taxonomy-contentious species, Sargassum fusiforme and Saccharina sculpera were found to be closely related to genera Sargassum and Saccharina, respectively, while Petalonia fascia showed possible relation to genus Scytosiphon. The study provided molecular evidence for the phylogenetic taxonomy of brown algae.

Collaboration


Dive into the Shan Chi's collaboration.

Top Co-Authors

Avatar

Tao Liu

Ocean University of China

View shared research outputs
Top Co-Authors

Avatar

Cui Liu

Ocean University of China

View shared research outputs
Top Co-Authors

Avatar

Xumin Wang

Beijing Institute of Genomics

View shared research outputs
Top Co-Authors

Avatar

Jun Yu

Beijing Institute of Genomics

View shared research outputs
Top Co-Authors

Avatar

Shuangxiu Wu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Guoliang Wang

Beijing Institute of Genomics

View shared research outputs
Top Co-Authors

Avatar

Lei Zhang

Ocean University of China

View shared research outputs
Top Co-Authors

Avatar

Jing Sun

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Liang Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yue Li

Ocean University of China

View shared research outputs
Researchain Logo
Decentralizing Knowledge