Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shanaz A. Ghandhi is active.

Publication


Featured researches published by Shanaz A. Ghandhi.


BMC Medical Genomics | 2008

Global gene expression analyses of bystander and alpha particle irradiated normal human lung fibroblasts: Synchronous and differential responses

Shanaz A. Ghandhi; Benjamin Yaghoubian; Sally A. Amundson

BackgroundThe existence of a radiation bystander effect, in which non-irradiated cells respond to signals from irradiated cells, is now well established. It raises concerns for the interpretation of risks arising from exposure to low doses of ionizing radiation. However, the regulatory mechanisms involved in the bystander response have not been well elucidated. To provide insight into the signaling pathways responding in bystanders, we have measured global gene expression four hours after bystander and direct alpha particle exposure of primary human lung fibroblasts.ResultsAlthough common p53-regulated radiation response genes like CDKN1A were expressed at elevated levels in the directly exposed cultures, they showed little or no change in the bystanders. In contrast, genes regulated by NFκB, such as PTGS2 (cyclooxygenase-2), IL8 and BCL2A1, responded nearly identically in bystander and irradiated cells. This trend was substantiated by gene ontology and pathway analyses of the microarray data, which suggest that bystander cells mount a full NFκB response, but a muted or partial p53 response. In time-course analyses, quantitative real-time PCR measurements of CDKN1A showed the expected 4-hour peak of expression in irradiated but not bystander cells. In contrast, PTGS2, IL8 and BCL2A1 responded with two waves of expression in both bystander and directly irradiated cells, one peaking at half an hour and the other between four and six hours after irradiation.ConclusionTwo major transcriptional hubs that regulate the direct response to ionizing radiation are also implicated in regulation of the bystander response, but to dramatically different degrees. While activation of the p53 response pathway is minimal in bystander cells, the NFκB response is virtually identical in irradiated and bystander cells. This alteration in the balance of signaling is likely to lead to different outcomes in irradiated cells and their bystanders, perhaps leading to greater survival of bystanders and increased risk from any long-term damage they have sustained.


Cellular Signalling | 2010

Radiation-induced bystander signaling pathways in human fibroblasts: a role for interleukin-33 in the signal transmission.

Vladimir N. Ivanov; Hongning Zhou; Shanaz A. Ghandhi; Thomas B. Karasic; Benjamin Yaghoubian; Sally A. Amundson; Tom K. Hei

The main goal of this study is to elucidate the mechanisms of the signal transmission for radiation-induced bystander response. The NF-kappaB-dependent gene expression of IL8, IL6, PTGS2/COX2, TNF and IL33 in directly irradiated human skin fibroblasts produced the cytokines and prostaglandin E2 (PGE2) with autocrine/paracrine functions, which further activated signaling pathways and induced NF-kappaB-dependent gene expression in bystander cells. As a result, bystander cells also started expression and production of interleukin-8, interleukin-6, COX-2-generated PGE2 and interleukin-33 (IL-33) followed by autocrine/paracrine stimulation of the NF-kappaB and MAPK pathways. A blockage of IL-33 transmitting functions with anti-IL-33 monoclonal antibody added into the culture media decreased NF-kappaB activation in directly irradiated and bystander cells. On the other hand, the IGF-1-Receptor kinase regulated the PI3K-AKT pathway in both directly irradiated and bystander fibroblasts. A pronounced and prolonged increase in AKT activity after irradiation was a characteristic feature of bystander cells. AKT positively regulated IL-33 protein expression levels. Suppression of the IGF-R1-AKT-IL-33 pathway substantially increased radiation-induced or TRAIL-induced apoptosis in fibroblasts. Taken together, our results demonstrated the early activation of NF-kappaB-dependent gene expression first in directly irradiated and then bystander fibroblasts, the further modulation of critical proteins, including IL-33, by AKT in bystander cells and late drastic changes in cell survival and in enhanced sensitivity to TRAIL-induced apoptosis after suppression of the IGF-1R-AKT-IL-33 signaling cascade in both directly irradiated and bystander cells.


BMC Medical Genomics | 2010

Regulation of early signaling and gene expression in the α-particle and bystander response of IMR-90 human fibroblasts

Shanaz A. Ghandhi; Lihua Ming; Vladimir N. Ivanov; Tom K. Hei; Sally A. Amundson

BackgroundThe existence of a radiation bystander effect, in which non-irradiated cells respond to signals from irradiated cells, is well established. To understand early signaling and gene regulation in bystander cells, we used a bio-informatics approach, measuring global gene expression at 30 minutes and signaling pathways between 30 minutes and 4 hours after exposure to α-particles in IMR-90 fibroblasts.MethodsWe used whole human genome microarrays and real time quantitative PCR to measure and validate gene expression. Microarray analysis was done using BRB-Array Tools; pathway and ontology analyses were done using Ingenuity Pathway Analysis and PANTHER, respectively. We studied signaling in irradiated and bystander cells using immunoblotting and semi-quantitative image analysis.ResultsGene ontology suggested signal transduction and transcriptional regulation responding 30 minutes after treatment affected cell structure, motility and adhesion, and interleukin synthesis. We measured time-dependent expression of genes controlled by the NF-κB pathway; matrix metalloproteinases 1 and 3; chemokine ligands 2, 3 and 5 and interleukins 1β, 6 and 33. There was an increased response of this set of genes 30 minutes after treatment and another wave of induction at 4 hours. We investigated AKT-GSK3β signaling and found both AKT and GSK3β are hyper-phosphorylated 30 minutes after irradiation and this effect is maintained through 4 hours. In bystander cells, a similar response was seen with a delay of 30 minutes. We proposed a network model where the observed decrease in phosphorylation of β-catenin protein after GSK3β dependent inactivation can trigger target gene expression at later times after radiation exposureConclusionsThese results are the first to show that the radiation induced bystander signal induces a widespread gene expression response at 30 minutes after treatment and these changes are accompanied by modification of signaling proteins in the PI3K-AKT-GSK3β pathway.


Environmental Health Perspectives | 2012

Mitochondria-Derived Reactive Intermediate Species Mediate Asbestos-Induced Genotoxicity and Oxidative Stress-Responsive Signaling Pathways

Sarah X.L. Huang; Michael A. Partridge; Shanaz A. Ghandhi; Mercy M. Davidson; Sally A. Amundson; Tom K. Hei

Background: The incidence of asbestos-induced human cancers is increasing worldwide, and considerable evidence suggests that reactive oxygen species (ROS) are important mediators of these diseases. Our previous studies suggested that mitochondria might be involved in the initiation of oxidative stress in asbestos-exposed mammalian cells. Objective: We investigated whether mitochondria are a potential cytoplasmic target of asbestos using a mitochondrial DNA–depleted (ρ0) human small airway epithelial (SAE) cell model: ρ0 SAE cells lack the capacity to produce mitochondrial ROS. Methods: We examined nuclear DNA damage, micronuclei (MN), intracellular ROS production, and the expression of inflammation-related nuclear genes in both parental and ρ0 SAE cells in response to asbestos treatment. Results: Asbestos induced a dose-dependent increase in nuclear DNA oxidative damage and MN in SAE cells. Furthermore, there was a significant increase in intracellular oxidant production and activation of genes involved in nuclear factor κB and proinflammatory signaling pathways in SAE cells. In contrast, the effects of asbestos were minimal in ρ0 SAE cells. Conclusions: Mitochondria are a major cytoplasmic target of asbestos. Asbestos may initiate mitochondria-associated ROS, which mediate asbestos-induced nuclear mutagenic events and inflammatory signaling pathways in exposed cells. These data provide new insights into the molecular mechanisms of asbestos-induced genotoxicity.


PLOS ONE | 2014

ATM Regulates Insulin-Like Growth Factor 1-Secretory Clusterin (IGF-1-sCLU) Expression that Protects Cells against Senescence

Xiuquan Luo; Masatoshi Suzuki; Shanaz A. Ghandhi; Sally A. Amundson; David A. Boothman

Downstream factors that regulate the decision between senescence and cell death have not been elucidated. Cells undergo senescence through three pathways, replicative senescence (RS), stress-induced premature senescence (SIPS) and oncogene-induced senescence. Recent studies suggest that the ataxia telangiectasia mutant (ATM) kinase is not only a key protein mediating cellular responses to DNA damage, but also regulates cellular senescence induced by telomere end exposure (in RS) or persistent DNA damage (in SIPS). Here, we show that expression of secretory clusterin (sCLU), a known pro-survival extracellular chaperone, is transcriptionally up-regulated during both RS and SIPS, but not in oncogene-induced senescence, consistent with a DNA damage-inducible mechanism. We demonstrate that ATM plays an important role in insulin-like growth factor 1 (IGF-1) expression, that in turn, regulates downstream sCLU induction during senescence. Loss of ATM activity, either by genomic mutation (ATM-deficient fibroblasts from an ataxia telangiectasia patient) or by administration of a chemical inhibitor (AAI, an inhibitor of ATM and ATR), blocks IGF-1-sCLU expression in senescent cells. Downstream, sCLU induction during senescence is mediated by IGF-1R/MAPK/Egr-1 signaling, identical to its induction after DNA damage. In contrast, administration of an IGF-1 inhibitor caused apoptosis of senescent cells. Thus, IGF-1 signaling is required for survival, whereas sCLU appears to protect cells from premature senescence, as IMR-90 cells with sCLU knockdown undergo senescence faster than control cells. Thus, the ATM-IGF-1-sCLU pathway protects cells from lethality and suspends senescence.


BMC Genomics | 2011

Time-series clustering of gene expression in irradiated and bystander fibroblasts: an application of FBPA clustering

Shanaz A. Ghandhi; Anshu Sinha; Marianthi Markatou; Sally A. Amundson

BackgroundThe radiation bystander effect is an important component of the overall biological response of tissues and organisms to ionizing radiation, but the signaling mechanisms between irradiated and non-irradiated bystander cells are not fully understood. In this study, we measured a time-series of gene expression after α-particle irradiation and applied the Feature Based Partitioning around medoids Algorithm (FBPA), a new clustering method suitable for sparse time series, to identify signaling modules that act in concert in the response to direct irradiation and bystander signaling. We compared our results with those of an alternate clustering method, Short Time series Expression Miner (STEM).ResultsWhile computational evaluations of both clustering results were similar, FBPA provided more biological insight. After irradiation, gene clusters were enriched for signal transduction, cell cycle/cell death and inflammation/immunity processes; but only FBPA separated clusters by function. In bystanders, gene clusters were enriched for cell communication/motility, signal transduction and inflammation processes; but biological functions did not separate as clearly with either clustering method as they did in irradiated samples. Network analysis confirmed p53 and NF-κB transcription factor-regulated gene clusters in irradiated and bystander cells and suggested novel regulators, such as KDM5B/JARID1B (lysine (K)-specific demethylase 5B) and HDACs (histone deacetylases), which could epigenetically coordinate gene expression after irradiation.ConclusionsIn this study, we have shown that a new time series clustering method, FBPA, can provide new leads to the mechanisms regulating the dynamic cellular response to radiation. The findings implicate epigenetic control of gene expression in addition to transcription factor networks.


Radiation Research | 2014

Gene Expression Response of Mice after a Single Dose of 137Cs as an Internal Emitter

Sunirmal Paul; Shanaz A. Ghandhi; Waylon Weber; Melanie Doyle-Eisele; Dunstana R. Melo; Raymond A. Guilmette; Sally A. Amundson

Cesium-137 is a radionuclide of concern in fallout from reactor accidents or nuclear detonations. When ingested or inhaled, it can expose the entire body for an extended period of time, potentially contributing to serious health consequences ranging from acute radiation syndrome to increased cancer risks. To identify changes in gene expression that may be informative for detecting such exposure, and to begin examining the molecular responses involved, we have profiled global gene expression in blood of male C57BL/6 mice injected with 137CsCl. We extracted RNA from the blood of control or 137CsCl-injected mice at 2, 3, 5, 20 or 30 days after exposure. Gene expression was measured using Agilent Whole Mouse Genome Microarrays, and the data was analyzed using BRB-ArrayTools. Between 466–6,213 genes were differentially expressed, depending on the time after 137Cs administration. At early times (2–3 days), the majority of responsive genes were expressed above control levels, while at later times (20–30 days) most responding genes were expressed below control levels. Numerous genes were overexpressed by day 2 or 3, and then underexpressed by day 20 or 30, including many Tp53-regulated genes. The same pattern was seen among significantly enriched gene ontology categories, including those related to nucleotide binding, protein localization and modification, actin and the cytoskeleton, and in the integrin signaling canonical pathway. We compared the expression of several genes three days after 137CsCl injection and three days after an acute external gamma-ray exposure, and found that the internal exposure appeared to produce a more sustained response. Many common radiation-responsive genes are altered by internally administered 137Cs, but the gene expression pattern resulting from continued irradiation at a decreasing dose rate is extremely complex, and appears to involve a late reversal of much of the initial response.


Experimental Cell Research | 2011

Radiation response and regulation of apoptosis induced by a combination of TRAIL and CHX in cells lacking mitochondrial DNA: a role for NF-κB--STAT3-directed Gene Expression

Vladimir N. Ivanov; Shanaz A. Ghandhi; Hongning Zhou; Sarah X. Huang; Yunfei Chai; Sally A. Amundson; Tom K. Hei

Mitochondrial DNA depleted (ρ(0)) human skin fibroblasts (HSF) with suppressed oxidative phosphorylation were characterized by significant changes in the expression of 2100 nuclear genes, encoding numerous protein classes, in NF-κB and STAT3 signaling pathways, and by decreased activity of mitochondrial death pathway, compared to the parental ρ(+) HSF. In contrast, the extrinsic TRAIL/TRAIL-Receptor mediated death pathway remained highly active, and exogenous TRAIL in a combination with cycloheximide (CHX) induced higher levels of apoptosis in ρ(0) cells compared to ρ(+) HSF. Global gene expression analysis using microarray and qRT-PCR demonstrated that mRNA expression levels of many growth factors and their adaptor proteins (FGF13, HGF, IGFBP4, IGFBP6, and IGFL2), cytokines (IL6, ΙL17Β, ΙL18, ΙL19, and ΙL28Β) and cytokine receptors (IL1R1, IL21R, and IL31RA) were substantially decreased after mitochondrial DNA depletion. Some of these genes were targets of NF-κB and STAT3, and their protein products could regulate the STAT3 signaling pathway. Alpha-irradiation further induced expression of several NF-κB/STAT3 target genes, including IL1A, IL1B, IL6, PTGS2/COX2 and MMP12, in ρ(+) HSF, but this response was substantially decreased in ρ(0) HSF. Suppression of the IKK-NF-κB pathway by the small molecular inhibitor BMS-345541 and of the JAK2-STAT3 pathway by AG490 dramatically increased TRAIL-induced apoptosis in the control and irradiated ρ(+) HSF. Inhibitory antibodies against IL6, the main activator of JAK2-STAT3 pathway, added into the cell media, also increased TRAIL-induced apoptosis in HSF, especially after alpha-irradiation. Collectively, our results indicated that NF-κB activation was partially lost in ρ(0) HSF resulting in downregulation of the basal or radiation-induced expression of numerous NF-κB targets, further suppressing IL6-JAK2-STAT3 that in concert with NF-κB regulated protection against TRAIL-induced apoptosis.


Radiation Research | 2011

p53-Independent Downregulation of Histone Gene Expression in Human Cell Lines by High- and Low-LET Radiation

Jarah A. Meador; Shanaz A. Ghandhi; Sally A. Amundson

Abstract Using microarrays to analyze differential gene expression as a function of p53 status and radiation quality, we observed downregulation of a large set of histone genes in p53 wild-type TK6 cells 24 h after exposure to equitoxic doses of high-LET (1.67 Gy 1 GeV/amu 56Fe ions) or low-LET (2.5 Gy γ rays) radiation. Quantitative real-time PCR of specific subtypes of core (H2A, H2B, H3 and H4) and linker (H1) histones confirmed this result. DNA synthesis and histone gene expression are tightly coordinated during the S phase of the cell cycle, and both processes are regulated by cell cycle checkpoints in response to DNA damage caused by ionizing radiation. However, we observed similar repression of histone gene expression in both TK6 cells and their p53-null derivative NH32 after radiation exposure, although the histone gene expression was not decreased to the same extent in NH32 cells as it was in TK6 cells. We also found decreased histone gene expression that was dose- and time-dependent in the colon cancer cell line HCT116 and its p53-null derivative. These results show that both high- and low-LET radiation exposure negatively regulate histone gene expression in human lymphoblastoid and colon cancer cell lines independent of p53 status.


Radiation and Environmental Biophysics | 2013

Single-cell responses to ionizing radiation

Brian Ponnaiya; Sally A. Amundson; Shanaz A. Ghandhi; Lubomir B. Smilenov; Charles R. Geard; Manuela Buonanno; David J. Brenner

While gene expression studies have proved extremely important in understanding cellular processes, it is becoming more apparent that there may be differences in individual cells that are missed by studying the population as a whole. We have developed a qRT-PCR protocol that allows us to assay multiple gene products in small samples, starting at 100 cells and going down to a single cell, and have used it to study radiation responses at the single-cell level. Since the accuracy of qRT-PCR depends greatly on the choice of “housekeeping” genes used for normalization, initial studies concentrated on determining the optimal panel of such genes. Using an endogenous control array, it was found that for IMR90 cells, common housekeeping genes tend to fall into one of two categories—those that are relatively stably expressed regardless of the number of cells in the sample, e.g., B2M, PPIA, and GAPDH, and those that are more variable (again regardless of the size of the population), e.g., YWHAZ, 18S, TBP, and HPRT1. Further, expression levels in commonly studied radiation-response genes, such as ATF3, CDKN1A, GADD45A, and MDM2, were assayed in 100, 10, and single-cell samples. It is here that the value of single-cell analyses becomes apparent. It was observed that the expression of some genes such as FGF2 and MDM2 was relatively constant over all irradiated cells, while that of others such as FAS was considerably more variable. It was clear that almost all cells respond to ionizing radiation but the individual responses were considerably varied. The analyses of single cells indicate that responses in individual cells are not uniform and suggest that responses observed in populations are not indicative of identical patterns in all cells. This in turn points to the value of single-cell analyses.

Collaboration


Dive into the Shanaz A. Ghandhi's collaboration.

Top Co-Authors

Avatar

Sally A. Amundson

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mashkura Chowdhury

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin Yaghoubian

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dunstana R. Melo

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge