Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Colin Havenar-Daughton is active.

Publication


Featured researches published by Colin Havenar-Daughton.


Immunity | 2013

Human Circulating PD-1+CXCR3−CXCR5+ Memory Tfh Cells Are Highly Functional and Correlate with Broadly Neutralizing HIV Antibody Responses

Michela Locci; Colin Havenar-Daughton; Elise Landais; Jennifer E. Wu; Mark A. Kroenke; Cecilia S. Lindestam Arlehamn; Laura F. Su; Rafael Cubas; Mark M. Davis; Alessandro Sette; Elias K. Haddad; Pascal Poignard; Shane Crotty

The vast majority of currently licensed human vaccines work on the basis of long-term protective antibody responses. It is now conceivable that an antibody-dependent HIV vaccine might be possible, given the discovery of HIV broadly neutralizing antibodies (bnAbs) in some HIV-infected individuals. However, these antibodies are difficult to develop and have characteristics indicative of a high degree of affinity maturation in germinal centers (GCs). CD4⁺ T follicular helper (Tfh) cells are specialized for B cell help and necessary for GCs. Therefore, the development of HIV bnAbs might depend on Tfh cells. Here, we identified in normal individuals a subpopulation of circulating memory PD-1⁺CXCR5⁺CD4⁺ T cells that are resting memory cells most related to bona fide GC Tfh cells by gene expression profile, cytokine profile, and functional properties. Importantly, the frequency of these cells correlated with the development of bnAbs against HIV in a large cohort of HIV⁺ individuals.


The Journal of Infectious Diseases | 2003

Moving to Human Immunodeficiency Virus Type 1 Vaccine Efficacy Trials: Defining T Cell Responses As Potential Correlates of Immunity

Nina D. Russell; Michael G. Hudgens; Richard Ha; Colin Havenar-Daughton; M. Juliana McElrath

There is evidence in both simian immunodeficiency virus and human immunodeficiency virus (HIV) type 1 infection that class I major histocompatibility complex-restricted CD8(+) cytotoxic T lymphocytes play a pivotal role in controlling infection and, potentially, in protecting by immunization. Progress has been made in designing strategies to elicit these responses with HIV-1 vaccines, but methods to reproducibly quantify them have posed difficulties. An interferon-gamma enzyme-linked immunospot assay, using peptide pools spanning the HIV-1 genes, was developed and standardized. This method is rapid (2 days), sensitive (threshold of detection, > or =0.005%), quantitative, feasible using cryopreserved cells, and able to define epitope specificities. When this assay was applied to 36 HIV-1-seropositive and 10 HIV-1-seronegative subjects, it proved to be robust (specificity, 100%). When responses in natural infection were compared with vaccine-induced responses, vaccine recipient responses were > or =1 log lower, which confirms the importance of using this sensitive assay as an initial screen in vaccine protocols.


Science | 2016

HIV-1 broadly neutralizing antibody precursor B cells revealed by germline-targeting immunogen

Joseph G. Jardine; Daniel W. Kulp; Colin Havenar-Daughton; Anita Sarkar; Bryan Briney; Devin Sok; Fabian Sesterhenn; June Ereño-Orbea; Oleksandr Kalyuzhniy; Isaiah Deresa; Xiaozhen Hu; Skye Spencer; Meaghan Jones; Erik Georgeson; Yumiko Adachi; Michael Kubitz; Allan C. deCamp; Jean-Philippe Julien; Ian A. Wilson; Dennis R. Burton; Shane Crotty; William R. Schief

Baby steps toward bNAbs Some HIV-infected individuals develop heavily mutated, broadly neutralizing antibodies (bNAbs) that target HIV. Scientists aim to design vaccines that would elicit such antibodies. Jardine et al. report an important step toward this goal: They engineered an immunogen that could engage B cells from HIV-uninfected individuals that express the germline versions of the immunoglobulin genes harbored by a particular class of bNAbs. The frequencies of these B cells, their affinities for the immunogen, and structural analysis suggest that the immunogen is a promising candidate. Further shaping of the B cell response with subsequent immunogens may eventually elicit bNAbs in people. Science, this issue p. 1458 People that have not been infected with HIV can harbor HIV-1 broadly neutralizing antibody B cell precursors. Induction of broadly neutralizing antibodies (bnAbs) is a major HIV vaccine goal. Germline-targeting immunogens aim to initiate bnAb induction by activating bnAb germline precursor B cells. Critical unmet challenges are to determine whether bnAb precursor naïve B cells bind germline-targeting immunogens and occur at sufficient frequency in humans for reliable vaccine responses. Using deep mutational scanning and multitarget optimization, we developed a germline-targeting immunogen (eOD-GT8) for diverse VRC01-class bnAbs. We then used the immunogen to isolate VRC01-class precursor naïve B cells from HIV-uninfected donors. Frequencies of true VRC01-class precursors, their structures, and their eOD-GT8 affinities support this immunogen as a candidate human vaccine prime. These methods could be applied to germline targeting for other classes of HIV bnAbs and for Abs to other pathogens.


PLOS Pathogens | 2016

Broadly Neutralizing Antibody Responses in a Large Longitudinal Sub-Saharan HIV Primary Infection Cohort.

Elise Landais; Xiayu Huang; Colin Havenar-Daughton; Ben Murrell; Matthew Price; Lalinda Wickramasinghe; Alejandra Ramos; Charoan B. Bian; Melissa Simek; Susan Allen; Etienne Karita; William Kilembe; Shabir Lakhi; Mubiana Inambao; Anatoli Kamali; Eduard J. Sanders; Omu Anzala; Vinodh Edward; Linda-Gail Bekker; Jianming Tang; Jill Gilmour; Sergei L. Kosakovsky-Pond; Pham Phung; Terri Wrin; Shane Crotty; Adam Godzik; Pascal Poignard

Broadly neutralizing antibodies (bnAbs) are thought to be a critical component of a protective HIV vaccine. However, designing vaccines immunogens able to elicit bnAbs has proven unsuccessful to date. Understanding the correlates and immunological mechanisms leading to the development of bnAb responses during natural HIV infection is thus critical to the design of a protective vaccine. The IAVI Protocol C program investigates a large longitudinal cohort of primary HIV-1 infection in Eastern and South Africa. Development of neutralization was evaluated in 439 donors using a 6 cross-clade pseudo-virus panel predictive of neutralization breadth on larger panels. About 15% of individuals developed bnAb responses, essentially between year 2 and year 4 of infection. Statistical analyses revealed no influence of gender, age or geographical origin on the development of neutralization breadth. However, cross-clade neutralization strongly correlated with high viral load as well as with low CD4 T cell counts, subtype-C infection and HLA-A*03(-) genotype. A correlation with high overall plasma IgG levels and anti-Env IgG binding titers was also found. The latter appeared not associated with higher affinity, suggesting a greater diversity of the anti-Env responses in broad neutralizers. Broadly neutralizing activity targeting glycan-dependent epitopes, largely the N332-glycan epitope region, was detected in nearly half of the broad neutralizers while CD4bs and gp41-MPER bnAb responses were only detected in very few individuals. Together the findings suggest that both viral and host factors are critical for the development of bnAbs and that the HIV Env N332-glycan supersite may be a favorable target for vaccine design.


Proceedings of the National Academy of Sciences of the United States of America | 2016

CXCL13 is a plasma biomarker of germinal center activity

Colin Havenar-Daughton; Madelene Lindqvist; Antje Heit; Jennifer E. Wu; Samantha M. Reiss; Kayla Kendric; Simon Bélanger; Sudhir Pai Kasturi; Elise Landais; Rama Akondy; Helen M. McGuire; Marcella Bothwell; Parsia A. Vagefi; Eileen Scully; Georgia D. Tomaras; Mark M. Davis; Pascal Poignard; Rafi Ahmed; Bruce D. Walker; Bali Pulendran; M. Juliana McElrath; Daniel E. Kaufmann; Shane Crotty

Significance A major challenge for vaccine science is that there is no way to measure germinal center activity in humans. This challenge is particularly acute for human clinical trials of candidate vaccines (and most nonhuman primate studies of candidate vaccines), because germinal centers are the engines of Ab affinity maturation, and generation of highly affinity-matured Ab responses is the goal of all Ab-eliciting vaccines. Here, we report that we have identified the chemokine CXCL13 [chemokine (C-X-C motif) ligand 13] as a biomarker of germinal center activity. We show explicit relationships between plasma CXCL13 concentrations and germinal center frequencies in lymph nodes in a series of different conditions, including licensed and experimental vaccines, and in humans, nonhuman primates, and mice. Significantly higher levels of plasma CXCL13 [chemokine (C-X-C motif) ligand 13] were associated with the generation of broadly neutralizing antibodies (bnAbs) against HIV in a large longitudinal cohort of HIV-infected individuals. Germinal centers (GCs) perform the remarkable task of optimizing B-cell Ab responses. GCs are required for almost all B-cell receptor affinity maturation and will be a critical parameter to monitor if HIV bnAbs are to be induced by vaccination. However, lymphoid tissue is rarely available from immunized humans, making the monitoring of GC activity by direct assessment of GC B cells and germinal center CD4+ T follicular helper (GC Tfh) cells problematic. The CXCL13–CXCR5 [chemokine (C-X-C motif) receptor 5] chemokine axis plays a central role in organizing both B-cell follicles and GCs. Because GC Tfh cells can produce CXCL13, we explored the potential use of CXCL13 as a blood biomarker to indicate GC activity. In a series of studies, we found that plasma CXCL13 levels correlated with GC activity in draining lymph nodes of immunized mice, immunized macaques, and HIV-infected humans. Furthermore, plasma CXCL13 levels in immunized humans correlated with the magnitude of Ab responses and the frequency of ICOS+ (inducible T-cell costimulator) Tfh-like cells in blood. Together, these findings support the potential use of CXCL13 as a plasma biomarker of GC activity in human vaccine trials and other clinical settings.


Immunity | 2017

Elicitation of Robust Tier 2 Neutralizing Antibody Responses in Nonhuman Primates by HIV Envelope Trimer Immunization Using Optimized Approaches

Matthias Pauthner; Colin Havenar-Daughton; Devin Sok; Joseph P. Nkolola; Raiza Bastidas; Archana V. Boopathy; Diane G. Carnathan; Abishek Chandrashekar; Kimberly M. Cirelli; Christopher A. Cottrell; Alexey Eroshkin; Javier Guenaga; Kirti Kaushik; Daniel W. Kulp; Jinyan Liu; Laura E. McCoy; Aaron L. Oom; Gabriel Ozorowski; Kai W. Post; Shailendra Kumar Sharma; Jon M. Steichen; Steven W. de Taeye; Talar Tokatlian; Alba Torrents de la Peña; Salvatore T. Butera; Celia C. LaBranche; David C. Montefiori; Guido Silvestri; Ian A. Wilson; Darrell J. Irvine

Summary The development of stabilized recombinant HIV envelope trimers that mimic the virion surface molecule has increased enthusiasm for a neutralizing antibody (nAb)‐based HIV vaccine. However, there is limited experience with recombinant trimers as immunogens in nonhuman primates, which are typically used as a model for humans. Here, we tested multiple immunogens and immunization strategies head‐to‐head to determine their impact on the quantity, quality, and kinetics of autologous tier 2 nAb development. A bilateral, adjuvanted, subcutaneous immunization protocol induced reproducible tier 2 nAb responses after only two immunizations 8 weeks apart, and these were further enhanced by a third immunization with BG505 SOSIP trimer. We identified immunogens that minimized non‐neutralizing V3 responses and demonstrated that continuous immunogen delivery could enhance nAb responses. nAb responses were strongly associated with germinal center reactions, as assessed by lymph node fine needle aspiration. This study provides a framework for preclinical and clinical vaccine studies targeting nAb elicitation. Graphical Abstract Figure. No Caption available. HighlightsImmunization protocols for rapid and consistent generation of autologous tier 2 nAbsGerminal center responses predict and correlate with HIV nAbs after immunizationEnv protein design curtails responses to the non‐neutralizing V3‐loop epitopeSubcutaneous and extended immunogen delivery enhances nAb generation &NA; There is limited experience with recombinant Env trimer immunogens in nonhuman primates. Pauthner et al. compare multiple Env trimer designs and immunization strategies for generating HIV neutralizing antibodies. They identify protocols for rapid and consistent generation of tier 2 nAbs, providing a framework for future pre‐clinical and clinical vaccine studies.


Immunological Reviews | 2017

Tfh cells and HIV bnAbs, an immunodominance model of the HIV neutralizing antibody generation problem

Colin Havenar-Daughton; Jeong Hyun Lee; Shane Crotty

The generation of HIV bnAbs may be one of the greatest feats of the human immune system and our best hope of finally creating an HIV vaccine. The striking amount of somatic hypermutation in HIV bnAbs led to the hypothesis that T follicular helper (Tfh) cells and germinal centers (GC) play a critical role in the ability of the immune system to generate these uncommon antibodies. In this review, we first summarize what is known about the immunological process of HIV bnAb development, the challenges of eliciting bnAbs via immunizations, and the putative central roles of Tfh cells and GC in the generation of HIV bnAbs. Next, we explore factors that have impeded our understanding of the GC and Tfh‐cell processes involved in bnAb generation, including the difficulty of quantifying antigen‐specific GC Tfh cells and the difficulty of tracking GC in human and non‐human primate vaccine studies. Finally, we discuss antibody immunodominance pertaining to neutralizing antibody generation and the GC response, propose models to explain the negative effects of immunodominance on neutralizing antibody generation, and consider means of optimizing Tfh and GC responses to potentially overcome these problems.


Journal of Immunology | 2016

A Cytokine-Independent Approach To Identify Antigen-Specific Human Germinal Center T Follicular Helper Cells and Rare Antigen-Specific CD4+ T Cells in Blood

Jennifer M. Dan; Cecilia S. Lindestam Arlehamn; Daniela Weiskopf; Ricardo da Silva Antunes; Colin Havenar-Daughton; Samantha M. Reiss; Matthew T. Brigger; Marcella Bothwell; Alessandro Sette; Shane Crotty

Detection of Ag-specific CD4+ T cells is central to the study of many human infectious diseases, vaccines, and autoimmune diseases. However, such cells are generally rare and heterogeneous in their cytokine profiles. Identification of Ag-specific germinal center (GC) T follicular helper (Tfh) cells by cytokine production has been particularly problematic. The function of a GC Tfh cell is to selectively help adjacent GC B cells via cognate interaction; thus, GC Tfh cells may be stingy cytokine producers, fundamentally different from Th1 or Th17 cells in the quantities of cytokines produced. Conventional identification of Ag-specific cells by intracellular cytokine staining relies on the ability of the CD4+ T cell to generate substantial amounts of cytokine. To address this problem, we have developed a cytokine-independent activation-induced marker (AIM) methodology to identify Ag-specific GC Tfh cells in human lymphoid tissue. Whereas Group A Streptococcus–specific GC Tfh cells produced minimal detectable cytokines by intracellular cytokine staining, the AIM method identified 85-fold more Ag-specific GC Tfh cells. Intriguingly, these GC Tfh cells consistently expressed programmed death ligand 1 upon activation. AIM also detected non-Tfh cells in lymphoid tissue. As such, we applied AIM for identification of rare Ag-specific CD4+ T cells in human peripheral blood. Dengue, tuberculosis, and pertussis vaccine–specific CD4+ T cells were readily detectable by AIM. In summary, cytokine assays missed 98% of Ag-specific human GC Tfh cells, reflecting the biology of these cells, which could instead be sensitively identified by coexpression of TCR-dependent activation markers.


Journal of Immunology | 2014

Early Lymphoid Responses and Germinal Center Formation Correlate with Lower Viral Load Set Points and Better Prognosis of Simian Immunodeficiency Virus Infection

Jung Joo Hong; Praveen K. Amancha; Kenneth Rogers; Cynthia L. Courtney; Colin Havenar-Daughton; Shane Crotty; Aftab A. Ansari; Francois Villinger

We have investigated the dynamics of germinal center (GC) formation in lymphoid tissues following acute SIV infection. SIV induces a marked follicular hyperplasia, associated with an aberrant accumulation of nonproliferating T follicular helper cells within GCs, but with an abundance of cells producing IL-21, demonstrating that the mechanisms involved for these two events appear independent. IL-21–stimulated T follicular helper cells are considered a critical element for GC formation, a physiological process that seems dysregulated and excessive during HIV/SIV infection, contributing to lymphoid pathogenesis. However, the data suggest that the kinetics by which such GCs are formed may be an important predictor of the host–pathogen equilibrium, as early GC hyperplasia was associated with better control of viral replication. In contrast, monkeys undergoing fast disease progression upon infection exhibited an involution of GCs without local IL-21 production in GCs. These results provide important clues regarding GC-related hyperimmune responses in the context of disease progression within various individuals during HIV/SIV infection and may open novel therapeutic avenues to limit lymphoid dysfunction, postinfection.


Journal of Immunology | 2016

Cytokine-Independent Detection of Antigen-Specific Germinal Center T Follicular Helper Cells in Immunized Nonhuman Primates Using a Live Cell Activation-Induced Marker Technique

Colin Havenar-Daughton; Samantha M. Reiss; Diane G. Carnathan; Jennifer E. Wu; Kayla Kendric; Alba Torrents de la Peña; Sudhir Pai Kasturi; Jennifer M. Dan; Marcella Bothwell; Rogier W. Sanders; Bali Pulendran; Guido Silvestri; Shane Crotty

A range of current candidate AIDS vaccine regimens are focused on generating protective HIV-neutralizing Ab responses. Many of these efforts rely on the rhesus macaque animal model. Understanding how protective Ab responses develop and how to increase their efficacy are both major knowledge gaps. Germinal centers (GCs) are the engines of Ab affinity maturation. GC T follicular helper (Tfh) CD4 T cells are required for GCs. Studying vaccine-specific GC Tfh cells after protein immunizations has been challenging, as Ag-specific GC Tfh cells are difficult to identify by conventional intracellular cytokine staining. Cytokine production by GC Tfh cells may be intrinsically limited in comparison with other Th effector cells, as the biological role of a GC Tfh cell is to provide help to individual B cells within the GC, rather than secreting large amounts of cytokines bathing a tissue. To test this idea, we developed a cytokine-independent method to identify Ag-specific GC Tfh cells. RNA sequencing was performed using TCR-stimulated GC Tfh cells to identify candidate markers. Validation experiments determined CD25 (IL-2Rα) and OX40 to be highly upregulated activation-induced markers (AIM) on the surface of GC Tfh cells after stimulation. In comparison with intracellular cytokine staining, the AIM assay identified >10-fold more Ag-specific GC Tfh cells in HIV Env protein–immunized macaques (BG505 SOSIP). CD4 T cells in blood were also studied. In summary, AIM demonstrates that Ag-specific GC Tfh cells are intrinsically stingy producers of cytokines, which is likely an essential part of their biological function.

Collaboration


Dive into the Colin Havenar-Daughton's collaboration.

Top Co-Authors

Avatar

Shane Crotty

La Jolla Institute for Allergy and Immunology

View shared research outputs
Top Co-Authors

Avatar

Samantha M. Reiss

La Jolla Institute for Allergy and Immunology

View shared research outputs
Top Co-Authors

Avatar

Bali Pulendran

Yerkes National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar

Daniel W. Kulp

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William R. Schief

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Elise Landais

International AIDS Vaccine Initiative

View shared research outputs
Top Co-Authors

Avatar

Guido Silvestri

Yerkes National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kirti Kaushik

La Jolla Institute for Allergy and Immunology

View shared research outputs
Researchain Logo
Decentralizing Knowledge