Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shane R. Nelson is active.

Publication


Featured researches published by Shane R. Nelson.


Nucleic Acids Research | 2011

Single Qdot-labeled glycosylase molecules use a wedge amino acid to probe for lesions while scanning along DNA

Andrew R. Dunn; Shane R. Nelson; David M. Warshaw; Susan S. Wallace

Within the base excision repair (BER) pathway, the DNA N-glycosylases are responsible for locating and removing the majority of oxidative base damages. Endonuclease III (Nth), formamidopyrimidine DNA glycosylase (Fpg) and endonuclease VIII (Nei) are members of two glycosylase families: the helix–hairpin–helix (HhH) superfamily and the Fpg/Nei family. The search mechanisms employed by these two families of glycosylases were examined using a single molecule assay to image quantum dot (Qdot)-labeled glycosylases interacting with YOYO-1 stained λ-DNA molecules suspended between 5 µm silica beads. The HhH and Fpg/Nei families were found to have a similar diffusive search mechanism described as a continuum of motion, in keeping with rotational diffusion along the DNA molecule ranging from slow, sub-diffusive to faster, unrestricted diffusion. The search mechanism for an Fpg variant, F111A, lacking a phenylalanine wedge residue no longer displayed slow, sub-diffusive motion compared to wild type, suggesting that Fpg base interrogation may be accomplished by Phe111 insertion.


Biophysical Journal | 2009

Random Walk of Processive, Quantum Dot-Labeled Myosin Va Molecules within the Actin Cortex of COS-7 Cells

Shane R. Nelson; M. Yusuf Ali; Kathleen M. Trybus; David M. Warshaw

Myosin Va (myoVa) is an actin-based intracellular cargo transporter. In vitro experiments have established that a single myoVa moves processively along actin tracks, but less is known about how this motor operates within cells. Here we track the movement of a quantum dot (Qdot)-labeled myoVa HMM in COS-7 cells using total internal reflectance fluorescence microscopy. This labeling approach is unique in that it allows myoVa, instead of its cargo, to be tracked. Single-particle analysis showed short periods (</=0.5 s) of ATP-sensitive linear motion. The mean velocity of these trajectories was 604 nm/s and independent of the number of myoVa molecules attached to the Qdot. With high time (16.6 ms) and spatial (15 nm) resolution imaging, Qdot-labeled myoVa moved with sequential 75 nm steps per head, at a rate of 16 s(-1), similarly to myoVa in vitro. Monte Carlo modeling suggests that the random nature of the trajectories represents processive myoVa motors undergoing a random walk through the dense and randomly oriented cortical actin network.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Two glycosylase families diffusively scan DNA using a wedge residue to probe for and identify oxidatively damaged bases

Shane R. Nelson; Andrew R. Dunn; Scott D. Kathe; David M. Warshaw; Susan S. Wallace

Significance Base excision repair, an evolutionarily conserved process responsible for the repair of most endogenous damage, is initiated by DNA glycosylases. Observation of the motion of single molecules of three bacterial glycosylases in two structural families, Fpg, Nei, and Nth, together with mutational analysis, has demonstrated that both families use a wedge residue to scan DNA for damage. Glycosylases pause during diffusion to interrogate bases and upon encountering a damage stop to evert and excise it. Moreover, we have derived a simple chemomechanical simulation that fits our data and is in agreement with ensemble studies. DNA glycosylases are enzymes that perform the initial steps of base excision repair, the principal repair mechanism that identifies and removes endogenous damages that occur in an organism’s DNA. We characterized the motion of single molecules of three bacterial glycosylases that recognize oxidized bases, Fpg, Nei, and Nth, as they scan for damages on tightropes of λ DNA. We find that all three enzymes use a key “wedge residue” to scan for damage because mutation of this residue to an alanine results in faster diffusion. Moreover, all three enzymes bind longer and diffuse more slowly on DNA that contains the damages they recognize and remove. Using a sliding window approach to measure diffusion constants and a simple chemomechanical simulation, we demonstrate that these enzymes diffuse along DNA, pausing momentarily to interrogate random bases, and when a damaged base is recognized, they stop to evert and excise it.


BMC Biology | 2017

Surface attachment, promoted by the actomyosin system of Toxoplasma gondii is important for efficient gliding motility and invasion

Jamie A. Whitelaw; Fernanda Latorre-Barragan; Simon Gras; Gurman S. Pall; Jacqueline M. Leung; Aoife T. Heaslip; Saskia Egarter; Nicole Andenmatten; Shane R. Nelson; David M. Warshaw; Gary E. Ward; Markus Meissner

BackgroundApicomplexan parasites employ a unique form of movement, termed gliding motility, in order to invade the host cell. This movement depends on the parasite’s actomyosin system, which is thought to generate the force during gliding. However, recent evidence questions the exact molecular role of this system, since mutants for core components of the gliding machinery, such as parasite actin or subunits of the MyoA-motor complex (the glideosome), remain motile and invasive, albeit at significantly reduced efficiencies. While compensatory mechanisms and unusual polymerisation kinetics of parasite actin have been evoked to explain these findings, the actomyosin system could also play a role distinct from force production during parasite movement.ResultsIn this study, we compared the phenotypes of different mutants for core components of the actomyosin system in Toxoplasma gondii to decipher their exact role during gliding motility and invasion. We found that, while some phenotypes (apicoplast segregation, host cell egress, dense granule motility) appeared early after induction of the act1 knockout and went to completion, a small percentage of the parasites remained capable of motility and invasion well past the point at which actin levels were undetectable. Those act1 conditional knockout (cKO) and mlc1 cKO that continue to move in 3D do so at speeds similar to wildtype parasites. However, these mutants are virtually unable to attach to a collagen-coated substrate under flow conditions, indicating an important role for the actomyosin system of T. gondii in the formation of attachment sites.ConclusionWe demonstrate that parasite actin is essential during the lytic cycle and cannot be compensated by other molecules. Our data suggest a conventional polymerisation mechanism in vivo that depends on a critical concentration of G-actin. Importantly, we demonstrate that the actomyosin system of the parasite functions in attachment to the surface substrate, and not necessarily as force generator.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Motor coupling through lipid membranes enhances transport velocities for ensembles of myosin Va.

Shane R. Nelson; Kathleen M. Trybus; David M. Warshaw

Significance Intracellular cargo transport is carried out by ensembles of cytoskeleton-based molecular motors, such as myosin Va. Physiologically, motor molecules are bound to (and mechanically coupled through) the vesicular membrane, which is a fluid lipid bilayer. Utilizing a combination of experiment and computer simulation, we characterize the influence of three distinct aspects of the vesicular ensemble (vesicle size, membrane composition, and motor density) on cargo transport. We also demonstrate the presence of vesicle populations that travel at velocities up to twice the unloaded velocity of a single motor. These findings serve to bridge the gap between enhanced vesicular velocities measured in vivo and depressed velocities measured in vitro. Myosin Va is an actin-based molecular motor responsible for transport and positioning of a wide array of intracellular cargoes. Although myosin Va motors have been well characterized at the single-molecule level, physiological transport is carried out by ensembles of motors. Studies that explore the behavior of ensembles of molecular motors have used nonphysiological cargoes such as DNA linkers or glass beads, which do not reproduce one key aspect of vesicular systems—the fluid intermotor coupling of biological lipid membranes. Using a system of defined synthetic lipid vesicles (100- to 650-nm diameter) composed of either 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) (fluid at room temperature) or 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) (gel at room temperature) with a range of surface densities of myosin Va motors (32–125 motors per μm2), we demonstrate that the velocity of vesicle transport by ensembles of myosin Va is sensitive to properties of the cargo. Gel-state DPPC vesicles bound with multiple motors travel at velocities equal to or less than vesicles with a single myosin Va (∼450 nm/s), whereas surprisingly, ensembles of myosin Va are able to transport fluid-state DOPC vesicles at velocities significantly faster (>700 nm/s) than a single motor. To explain these data, we developed a Monte Carlo simulation that suggests that these reductions in velocity can be attributed to two distinct mechanisms of intermotor interference (i.e., load-dependent modulation of stepping kinetics and binding-site exclusion), whereas faster transport velocities are consistent with a model wherein the normal stepping behavior of the myosin is supplemented by the preferential detachment of the trailing motor from the actin track.


PLOS ONE | 2014

Cytoskeletal Dependence of Insulin Granule Movement Dynamics in INS-1 Beta-Cells in Response to Glucose

Aoife T. Heaslip; Shane R. Nelson; Andrew T. Lombardo; Samantha Beck Previs; Jessica M. Armstrong; David M. Warshaw

For pancreatic β-cells to secrete insulin in response to elevated blood glucose, insulin granules retained within the subplasmalemmal space must be transported to sites of secretion on the plasma membrane. Using a combination of super-resolution STORM imaging and live cell TIRF microscopy we investigate how the organization and dynamics of the actin and microtubule cytoskeletons in INS-1 β-cells contribute to this process. GFP-labeled insulin granules display 3 different modes of motion (stationary, diffusive-like, and directed). Diffusive-like motion dominates in basal, low glucose conditions. Upon glucose stimulation no gross rearrangement of the actin cytoskeleton is observed but there are increases in the 1) rate of microtubule polymerization; 2) rate of diffusive-like motion; and 3) proportion of granules undergoing microtubule-based directed motion. By pharmacologically perturbing the actin and microtubule cytoskeletons, we determine that microtubule-dependent granule transport occurs within the subplasmalemmal space and that the actin cytoskeleton limits this transport in basal conditions, when insulin secretion needs to be inhibited.


Molecular Biology of the Cell | 2016

Dense granule trafficking in Toxoplasma gondii requires a unique class 27 myosin and actin filaments

Aoife T. Heaslip; Shane R. Nelson; David M. Warshaw

The survival of Toxoplasma gondii within its host cell requires protein release from vesicles, called dense granules (DGs). Through imaging of the motions of DGs in live intracellular parasites, it is shown that DG transport is dependent on F-actin and a class 27 myosin, TgMyoF, thus uncovering new critical roles for these essential proteins in the parasite’s lytic cycle.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Full-length myosin Va exhibits altered gating during processive movement on actin

Jessica M. Armstrong; Elena B. Krementsova; Arthur J. Michalek; Aoife T. Heaslip; Shane R. Nelson; Kathleen M. Trybus; David M. Warshaw

Myosin Va (myoV) is a processive molecular motor that transports intracellular cargo along actin tracks with each head taking multiple 72-nm hand-over-hand steps. This stepping behavior was observed with a constitutively active, truncated myoV, in which the autoinhibitory interactions between the globular tail and motor domains (i.e., heads) that regulate the full-length molecule no longer exist. Without cargo at near physiologic ionic strength (100 mM KCl), full-length myoV adopts a folded (approximately 15 S), enzymatically-inhibited state that unfolds to an extended (approximately 11 S), active conformation at higher salt (250 mM). Under conditions favoring the folded, inhibited state, we show that Quantum-dot-labeled myoV exhibits two types of interaction with actin in the presence of MgATP. Most motors bind to actin and remain stationary, but surprisingly, approximately 20% are processive. The moving motors transition between a strictly gated and hand-over-hand stepping pattern typical of a constitutively active motor, and a new mode with a highly variable stepping pattern suggestive of altered gating. Each head of this partially inhibited motor takes longer-lived, short forward (35 nm) and backward (28 nm) steps, presumably due to globular tail-head interactions that modify the gating of the individual heads. This unique mechanical state may be an intermediate in the pathway between the inhibited and active states of the motor.


Methods of Molecular Biology | 2011

Quantum dot labeling strategies to characterize single-molecular motors.

Shane R. Nelson; M. Yusuf Ali; David M. Warshaw

Recent advances in single-molecule labeling and detection techniques allow high-resolution imaging of the motion of single molecules. Molecular motors are biological machines that convert chemical energy into mechanical work. Myosin Va (MyoVa) is a well-characterized processive molecular motor, essential for cargo transport in living organisms. Quantum dots (Qdots) are fluorescent semiconductor nanocrystals that are extremely useful for single-molecule studies in biological sciences. High-resolution video microscopy and single-particle tracking of a Qdot-labeled MyoVa motor molecule allow the detection of individual steps in vitro and in live cells.


Traffic | 2017

The Axonal Transport Motor Kinesin‐2 Navigates Microtubule Obstacles via Protofilament Switching

Gregory J. Hoeprich; Keith J. Mickolajczyk; Shane R. Nelson; William O. Hancock; Christopher L. Berger

Axonal transport involves kinesin motors trafficking cargo along microtubules that are rich in microtubule‐associated proteins (MAPs). Much attention has focused on the behavior of kinesin‐1 in the presence of MAPs, which has overshadowed understanding the contribution of other kinesins such as kinesin‐2 in axonal transport. We have previously shown that, unlike kinesin‐1, kinesin‐2 in vitro motility is insensitive to the neuronal MAP Tau. However, the mechanism by which kinesin‐2 efficiently navigates Tau on the microtubule surface is unknown. We hypothesized that mammalian kinesin‐2 side‐steps to adjacent protofilaments to maneuver around MAPs. To test this, we used single‐molecule imaging to track the characteristic run length and protofilament switching behavior of kinesin‐1 and kinesin‐2 motors in the absence and presence of 2 different microtubule obstacles. Under all conditions tested, kinesin‐2 switched protofilaments more frequently than kinesin‐1. Using computational modeling that recapitulates run length and switching frequencies in the presence of varying roadblock densities, we conclude that kinesin‐2 switches protofilaments to navigate around microtubule obstacles. Elucidating the kinesin‐2 mechanism of navigation on the crowded microtubule surface provides a refined view of its contribution in facilitating axonal transport.

Collaboration


Dive into the Shane R. Nelson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sam Walcott

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge