Shangqin Guo
Yale University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shangqin Guo.
Nature | 2010
Marc H.G.P. Raaijmakers; Siddhartha Mukherjee; Shangqin Guo; Siyi Zhang; Tatsuya Kobayashi; Jesse A. Schoonmaker; Benjamin L. Ebert; Fatima Al-Shahrour; Robert P. Hasserjian; Edward Scadden; Zinmar Aung; Marc Matza; Matthias Merkenschlager; Charles Lin; Johanna M. Rommens; David T. Scadden
Mesenchymal cells contribute to the ‘stroma’ of most normal and malignant tissues, with specific mesenchymal cells participating in the regulatory niches of stem cells. By examining how mesenchymal osteolineage cells modulate haematopoiesis, here we show that deletion of Dicer1 specifically in mouse osteoprogenitors, but not in mature osteoblasts, disrupts the integrity of haematopoiesis. Myelodysplasia resulted and acute myelogenous leukaemia emerged that had acquired several genetic abnormalities while having intact Dicer1. Examining gene expression altered in osteoprogenitors as a result of Dicer1 deletion showed reduced expression of Sbds, the gene mutated in Schwachman–Bodian–Diamond syndrome—a human bone marrow failure and leukaemia pre-disposition condition. Deletion of Sbds in mouse osteoprogenitors induced bone marrow dysfunction with myelodysplasia. Therefore, perturbation of specific mesenchymal subsets of stromal cells can disorder differentiation, proliferation and apoptosis of heterologous cells, and disrupt tissue homeostasis. Furthermore, primary stromal dysfunction can result in secondary neoplastic disease, supporting the concept of niche-induced oncogenesis.
Developmental Cell | 2008
Jun Lu; Shangqin Guo; Benjamin L. Ebert; Hao Zhang; Xiao Peng; Jocelyn Bosco; Jennifer L. Pretz; Rita Schlanger; Judy Y. Wang; Raymond H. Mak; David Dombkowski; Frederic I. Preffer; David T. Scadden; Todd R. Golub
Lineage specification is a critical issue in developmental and regenerative biology. We hypothesized that microRNAs (miRNAs) are important participants in those processes and used the poorly understood regulation of megakaryocyte-erythrocyte progenitors (MEPs) in hematopoiesis as a model system. We report here that miR-150 modulates lineage fate in MEPs. Using a novel methodology capable of profiling miRNA expression in small numbers of primary cells, we identify miR-150 as preferentially expressed in the megakaryocytic lineage. Through gain- and loss-of-function experiments, we demonstrate that miR-150 drives MEP differentiation toward megakaryocytes at the expense of erythroid cells in vitro and in vivo. Moreover, we identify the transcription factor MYB as a critical target of miR-150 in this regulation. These experiments show that miR-150 regulates MEP fate, and thus establish a role for miRNAs in lineage specification of mammalian multipotent cells.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Shangqin Guo; Jun Lu; Rita Schlanger; Hao Zhang; Judy Y. Wang; Michelle Caroline Fox; Louise E. Purton; Heather H. Fleming; Bradley S. Cobb; Matthias Merkenschlager; Todd R. Golub; David T. Scadden
MicroRNAs influence hematopoietic differentiation, but little is known about their effects on the stem cell state. Here, we report that the microRNA processing enzyme Dicer is essential for stem cell persistence in vivo and a specific microRNA, miR-125a, controls the size of the stem cell population by regulating hematopoietic stem/progenitor cell (HSPC) apoptosis. Conditional deletion of Dicer revealed an absolute dependence for the multipotent HSPC population in a cell-autonomous manner, with increased HSPC apoptosis in mutant animals. An evolutionarily conserved microRNA cluster containing miR-99b, let-7e, and miR-125a was preferentially expressed in long-term hematopoietic stem cells. MicroRNA miR-125a alone was capable of increasing the number of hematopoietic stem cells in vivo by more than 8-fold. This result was accomplished through a differentiation stage-specific reduction of apoptosis in immature hematopoietic progenitors, possibly through targeting multiple proapoptotic genes. Bak1 was directly down-regulated by miR-125a and expression of a 3′UTR-less Bak1 blocked miR-125a-induced hematopoietic expansion in vivo. These data demonstrate cell-state-specific regulation by microRNA and identify a unique microRNA functioning to regulate the stem cell pool size.
Cell | 2014
Shangqin Guo; Xiaoyuan Zi; Vincent P. Schulz; Jijun Cheng; Mei Zhong; Sebastian H.J. Koochaki; Cynthia M. Megyola; Xinghua Pan; Kartoosh Heydari; Sherman M. Weissman; Patrick G. Gallagher; Diane S. Krause; Rong Fan; Jun Lu
Reprogramming somatic cells to induced pluripotency by Yamanaka factors is usually slow and inefficient and is thought to be a stochastic process. We identified a privileged somatic cell state, from which acquisition of pluripotency could occur in a nonstochastic manner. Subsets of murine hematopoietic progenitors are privileged whose progeny cells predominantly adopt the pluripotent fate with activation of endogenous Oct4 locus after four to five divisions in reprogramming conditions. Privileged cells display an ultrafast cell cycle of ∼8 hr. In fibroblasts, a subpopulation cycling at a similar ultrafast speed is observed after 6 days of factor expression and is increased by p53 knockdown. This ultrafast cycling population accounts for >99% of the bulk reprogramming activity in wild-type or p53 knockdown fibroblasts. Our data demonstrate that the stochastic nature of reprogramming can be overcome in a privileged somatic cell state and suggest that cell-cycle acceleration toward a critical threshold is an important bottleneck for reprogramming. PAPERCLIP:
Development | 2010
Valentina Greco; Shangqin Guo
A key question in the stem cell field is how to balance the slow cycling of stem cells with active organ growth. Recent studies of the hair follicle stem cell niche have shown that this can be achieved by organizing the stem cell niche into two compartments: one that engages in immediate, rapid new growth and one that contributes later to long-term growth that fuels hair regeneration. Based on these and other recent findings, we propose that several other adult stem cell niches, including those in the blood, intestine and brain, have a similar bi-compartmental organization and that stem cells might work cooperatively with their progeny to sustain tissue regeneration.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Shangqin Guo; Haitao Bai; Cynthia M. Megyola; Stephanie Halene; Diane S. Krause; David T. Scadden; Jun Lu
Deregulation of microRNA (miRNA) expression can lead to cancer initiation and progression. However, limited information exists on the function of miRNAs in cancer maintenance. We examined these issues in the case of myeloproliferative diseases and neoplasms (MPN), a collection of hematopoietic neoplasms regarded as preleukemic, thereby representing early neoplastic states. We report here that microRNA-125a (miR-125a)–induced MPN display a complex manner of oncogene dependence. Following a gain-of-function genomics screen, we overexpressed candidate miR-125a in vivo, which led to phenotypes consistent with an atypical MPN characterized by leukocytosis, monocytosis, splenomegaly, and progressive anemia. The diseased MPN state could be recapitulated in a doxycycline-inducible mouse model. Upon doxycycline withdrawal, the primary MPN phenotypes rapidly resolved after the discontinuation of miR-125a overexpression. However, reinduction of miR-125a led to complex phenotypes, with some animals rapidly developing lethal anemia with extensive damages in the spleen. Forced expression of miR-125a resulted in elevated cellular tyrosine phosphorylation and hypersensitivity toward hematopoietic cytokines. Furthermore, we demonstrate that miR-125a targets multiple protein phosphatases. Our data demonstrate that miR-125a–induced MPN is addicted to its sustained overexpression, and highlight the complex nature of oncogenic miRNA dependence in an early neoplastic state.
PLOS ONE | 2013
Mona Nolde; Ee-chun Cheng; Shangqin Guo; Haifan Lin
Hematopoietic stem cells (HSC) must engage in a life-long balance between self-renewal and differentiation to sustain hematopoiesis. The highly conserved PIWI protein family regulates proliferative states of stem cells and their progeny in diverse organisms. A Human piwi gene (for clarity, the non-italicized “piwi” refers to the gene subfamily), HIWI (PIWIL1), is expressed in CD34+ stem/progenitor cells and transient expression of HIWI in a human leukemia cell line drastically reduces cell proliferation, implying the potential function of these proteins in hematopoiesis. Here, we report that one of the three piwi genes in mice, Miwi2 (Piwil4), is expressed in primitive hematopoetic cell types within the bone marrow. Mice with a global deletion of all three piwi genes, Miwi, Mili, and Miwi2, are able to maintain long-term hematopoiesis with no observable effect on the homeostatic HSC compartment in adult mice. The PIWI-deficient hematopoetic cells are capable of normal lineage reconstitution after competitive transplantation. We further show that the three piwi genes are dispensable during hematopoietic recovery after myeloablative stress by 5-FU. Collectively, our data suggest that the function of the piwi gene subfamily is not required for normal adult hematopoiesis.
Stem Cells | 2013
Cynthia M. Megyola; Yuan Gao; Alexandra M. Teixeira; Jijun Cheng; Kartoosh Heydari; Ee-chun Cheng; Timothy Nottoli; Diane S. Krause; Jun Lu; Shangqin Guo
Discovery of the cellular and molecular mechanisms of induced pluripotency has been hampered by its low efficiency and slow kinetics. Here, we report an experimental system with multicolor time‐lapse microscopy that permits direct observation of pluripotency induction at single cell resolution, with temporal intervals as short as 5 minutes. Using granulocyte‐monocyte progenitors as source cells, we visualized nascent pluripotent cells that emerge from a hematopoietic state. We engineered a suite of image processing and analysis software to annotate the behaviors of the reprogramming cells, which revealed the highly dynamic cell‐cell interactions associated with early reprogramming. We observed frequent cell migration, which can lead to sister colonies, satellite colonies, and colonies of mixed genetic makeup. In addition, we discovered a previously unknown morphologically distinct two‐cell intermediate of reprogramming, which occurs prior to other reprogramming landmarks. By directly visualizing the reprogramming process with E‐cadherin inhibition, we demonstrate that E‐cadherin is required for proper cellular interactions from an early stage of reprogramming, including the two‐cell intermediate. The detailed cell‐cell interactions revealed by this imaging platform shed light on previously unappreciated early reprogramming dynamics. This experimental system could serve as a powerful tool to dissect the complex mechanisms of early reprogramming by focusing on the relevant but rare cells with superb temporal and spatial resolution. STEM CELLS 2013;31:895–905
Nature Communications | 2016
Jijun Cheng; Christine Roden; Wen Pan; Shu Zhu; Anna Baccei; Xinghua Pan; Tingting Jiang; Yuval Kluger; Sherman M. Weissman; Shangqin Guo; Richard A. Flavell; Ye Ding; Jun Lu
Clustered regularly-interspaced palindromic repeats (CRISPR)-based genetic screens using single-guide-RNA (sgRNA) libraries have proven powerful to identify genetic regulators. Applying CRISPR screens to interrogate functional elements in noncoding regions requires generating sgRNA libraries that are densely covering, and ideally inexpensive, easy to implement and flexible for customization. Here we present a Molecular Chipper technology for generating dense sgRNA libraries for genomic regions of interest, and a proof-of-principle screen that identifies novel cis-regulatory domains for miR-142 biogenesis. The Molecular Chipper approach utilizes a combination of random fragmentation and a type III restriction enzyme to derive a densely covering sgRNA library from input DNA. Applying this approach to 17 microRNAs and their flanking regions and with a reporter for miR-142 activity, we identify both the pre-miR-142 region and two previously unrecognized cis-domains important for miR-142 biogenesis, with the latter regulating miR-142 processing. This strategy will be useful for identifying functional noncoding elements in mammalian genomes.
Blood | 2017
Jun Liu; Bo Guo; Zhuo Chen; Nayi Wang; Michelina Iacovino; Jijun Cheng; Christine Roden; Wen Pan; Sajid A. Khan; Suning Chen; Michael Kyba; Rong Fan; Shangqin Guo; Jun Lu
The hematopoietic stem cell-enriched miR-125 family microRNAs (miRNAs) are critical regulators of hematopoiesis. Overexpression of miR-125a or miR-125b is frequent in human acute myeloid leukemia (AML), and the overexpression of these miRNAs in mice leads to expansion of hematopoietic stem cells accompanied by perturbed hematopoiesis with mostly myeloproliferative phenotypes. However, whether and how miR-125 family miRNAs cooperate with known AML oncogenes in vivo, and how the resultant leukemia is dependent on miR-125 overexpression, are not well understood. We modeled the frequent co-occurrence of miR-125b overexpression and MLL translocations by examining functional cooperation between miR-125b and MLL-AF9 By generating a knock-in mouse model in which miR-125b overexpression is controlled by doxycycline induction, we demonstrated that miR-125b significantly enhances MLL-AF9-driven AML in vivo, and the resultant leukemia is partially dependent on continued overexpression of miR-125b Surprisingly, miR-125b promotes AML cell expansion and suppresses apoptosis involving a non-cell-intrinsic mechanism. MiR-125b expression enhances VEGFA expression and production from leukemia cells, in part by suppressing TET2 Recombinant VEGFA recapitulates the leukemia-promoting effects of miR-125b, whereas knockdown of VEGFA or inhibition of VEGF receptor 2 abolishes the effects of miR-125b In addition, significant correlation between miR-125b and VEGFA expression is observed in human AMLs. Our data reveal cooperative and dependent relationships between miR-125b and the MLL oncogene in AML leukemogenesis, and demonstrate a miR-125b-TET2-VEGFA pathway in mediating non-cell-intrinsic leukemia-promoting effects by an oncogenic miRNA.