Shankar J. Evani
University of Texas at San Antonio
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shankar J. Evani.
The FASEB Journal | 2013
Shankar J. Evani; Rajesh G. Prabhu; Vimalatharmaiyah Gnanaruban; Ender A. Finol; Anand K. Ramasubramanian
Endothelial adhesion is necessary for the hematogenous dissemination of tumor cells. However, the metastatic breast tumor cell MDA‐MB‐231 does not bind to the endothelium under physiological flow conditions, suggesting alternate mechanisms of adhesion. Since monocytes are highly represented in the tumor microenvironment, and also bind to endothelium during inflammation, we hypothesized that the monocytes assist in the arrest of MDA‐MB‐231 on the endothelium. Using in vitro models of the dynamic shear environment of the vasculature, we show that TNF‐α‐activated THP1/primary human monocytes and MDA‐MB‐231 cells form stable aggregates, and that the monocytes in these aggregates mediate the adhesion of otherwise nonadherent MDA‐MB‐231 cells to inflamed endothelium under flow (55±2.4 vs. 1.7±0.82 at a shear stress of 0.5 dyn/cm2, P<0.01). We also show that the hydrodynamic forces determine the size and orientation of aggregates adhered to the endothelium, and strongly favor the attachment of small aggregates with tumor cells downstream of flow (74–86% doublets at 0.5–2 dyn/cm2, P<0.01). The 5‐foldup‐regulation of ICAM‐1 on TNF‐α‐activated MDA‐MB‐231 cells through the Nf‐κB pathway was found to be critical in MDA‐MB‐231‐monocyte aggregation and endothelial adhesion. Our results demonstrate that, under inflammatory conditions, monocytes may serve to disseminate tumor cells through circulation, and the tumor‐monocyte–endothelial axis may represent a new therapeutic target to reduce cancer metastasis.—Evani, S. J., Prabhu, R. G., Gnanaruban, V., Finol, E. A.Ramasubramanian, A. K., Monocytes mediate metastatic breast tumor cell adhesion to endothelium under flow. FASEB J. 27, 3017–3029 (2013). www.fasebj.org
Transfusion | 2013
Robbie K. Montgomery; Kristin M. Reddoch; Shankar J. Evani; Andrew P. Cap; Anand K. Ramasubramanian
Refrigeration of platelets (PLTs) offers an attractive alternative to the currently practiced storage at room temperature since it may mitigate problems associated with bacterial contamination and extend storage lifetime. Refrigeration causes a number of biophysical and biochemical changes in PLTs and decreases PLT circulation time in vivo. However, the effect of refrigeration on PLT hemostatic functions under physiologic and pathophysiologic shear conditions has not been adequately characterized.
Vaccine | 2010
Bharat K R Chaganty; Ashlesh K. Murthy; Shankar J. Evani; Weidang Li; M. Neal Guentzel; James P. Chambers; Guangming Zhong; Bernard P. Arulanandam
We have shown previously that vaccination with recombinant chlamydial protease-like activity factor (rCPAF) plus interleukin-12 as an adjuvant induces robust protective immunity against primary genital Chlamydia muridarum challenge in mice. Since CPAF is a protease, we compared the effects of enzymatically active and inactive (heat denatured) rCPAF to determine whether proteolytic activity is expendable for the induction of protective immunity against chlamydial challenge. Active, but not inactive, rCPAF immunization induced high levels of anti-active CPAF antibody, whereas both induced robust splenic CPAF-specific IFN-gamma production. Vaccination with active or inactive rCPAF induced enhanced vaginal chlamydial clearance as early as day 6 with complete resolution of infection by day 18, compared to day 30 in mock-vaccinated and challenged animals. Importantly, significant and comparable reductions in oviduct pathology were observed in active and inactive rCPAF-vaccinated mice compared to mock-vaccinated animals. Thus, rCPAF induced anti-chlamydial immunity is largely independent of enzymatic activity and secondary or higher order protein conformation.
PLOS ONE | 2013
Srikanth Manam; Bharat K R Chaganty; Shankar J. Evani; Mark T. Zafiratos; Anand K. Ramasubramanian; Bernard P. Arulanandam; Ashlesh K. Murthy
Chlamydia trachomatis is the most common bacterial sexually transmitted disease in the world and specifically in the United States, with the highest incidence in age-groups 14–19 years. In a subset of females, the C. trachomatis genital infection leads to serious pathological sequelae including pelvic inflammatory disease, ectopic pregnancy, and infertility. Chlamydia pneumoniae, another member of the same genus, is a common cause of community acquired respiratory infection with significant number of children aged 5–14 yr displaying sero-conversion. Since these bacteriae share several antigenic determinants, we evaluated whether intranasal immunization with live C. pneumoniae (1×106 inclusion forming units; IFU) in 5 week old female C57BL/6 mice would induce cross-species protection against subsequent intravaginal challenge with Chlamydia muridarum (5×104 IFU), which causes a similar genital infection and pathology in mice as C. trachomatis in humans. Mice vaccinated intranasally with live C. pneumoniae, but not mock (PBS) immunized animals, displayed high levels of splenic cellular antigen-specific IFN-γ production and serum antibody response against C. muridarum and C. trachomatis. Mice vaccinated with C. pneumoniae displayed a significant reduction in the vaginal C. muridarum shedding as early as day 12 after secondary i.vag. challenge compared to PBS (mock) immunized mice. At day 19 after C. muridarum challenge, 100% of C. pneumoniae vaccinated mice had cleared the infection compared to none (0%) of the mock immunized mice, which cleared the infection by day 27. At day 80 after C. muridarum challenge, C. pneumoniae vaccinated mice displayed a significant reduction in the incidence (50%) and degree of hydrosalpinx compared to mock immunized animals (100%). These results suggest that respiratory C. pneumoniae infection induces accelerated chlamydial clearance and reduction of oviduct pathology following genital C. muridarum challenge, and may have important implications to the C. trachomatis-induced reproductive disease in humans.
Scientific Reports | 2016
Shankar J. Evani; Anand K. Ramasubramanian
Chlamydia pneumoniae infection is implicated in atherosclerosis although the contributory mechanisms are poorly understood. We hypothesize that C. pneumoniae infection favors the recruitment of monocytes to atherosclerotic foci by altering monocyte biophysics. Primary, fresh human monocytes were infected with C. pneumoniae for 8 h, and the interactions between monocytes and E-selectin or aortic endothelium under flow were characterized by video microscopy and image analysis. The distribution of membrane lipid rafts and adhesion receptors were analyzed by imaging flow cytometry. Infected cells rolled on E-selectin and endothelial surfaces, and this rolling was slower, steady and uniform compared to uninfected cells. Infection decreases cholesterol levels, increases membrane fluidity, disrupts lipid rafts, and redistributes CD44, which is the primary mediator of rolling interactions. Together, these changes translate to higher firm adhesion of infected monocytes on endothelium, which is enhanced in the presence of LDL. Uninfected monocytes treated with LDL or left untreated were used as baseline control. Our results demonstrate that the membrane biophysical changes due to infection and hyperlipidemia are one of the key mechanisms by which C. pneumoniae can exacerbate atherosclerotic pathology. These findings provide a framework to characterize the role of ‘infectious burden’ in the development and progression of atherosclerosis.
PLOS ONE | 2011
Shankar J. Evani; Ashlesh K. Murthy; Naresh Mareedu; Robbie K. Montgomery; Bernard P. Arulanandam; Anand K. Ramasubramanian
Systemic bacterial infections elicit inflammatory response that promotes acute or chronic complications such as sepsis, arthritis or atherosclerosis. Of interest, cells in circulation experience hydrodynamic shear forces, which have been shown to be a potent regulator of cellular function in the vasculature and play an important role in maintaining tissue homeostasis. In this study, we have examined the effect of shear forces due to blood flow in modulating the inflammatory response of cells to infection. Using an in vitro model, we analyzed the effects of physiological levels of shear stress on the inflammatory response of monocytes infected with chlamydia, an intracellular pathogen which causes bronchitis and is implicated in the development of atherosclerosis. We found that chlamydial infection alters the morphology of monocytes and trigger the release of pro-inflammatory cytokines TNF-α, IL-8, IL-1β and IL-6. We also found that the exposure of chlamydia-infected monocytes to short durations of arterial shear stress significantly enhances the secretion of cytokines in a time-dependent manner and the expression of surface adhesion molecule ICAM-1. As a functional consequence, infection and shear stress increased monocyte adhesion to endothelial cells under flow and in the activation and aggregation of platelets. Overall, our study demonstrates that shear stress enhances the inflammatory response of monocytes to infection, suggesting that mechanical forces may contribute to disease pathophysiology. These results provide a novel perspective on our understanding of systemic infection and inflammation.
Frontiers in Microbiology | 2016
Shankar J. Evani; Shatha F. Dallo; Anand K. Ramasubramanian
Multiple studies support the hypothesis that infectious agents may be involved in the pathogenesis of atherosclerosis. Chlamydia pneumoniae is strongly implicated in atherosclerosis, but the precise role has been underestimated and poorly understood due to the complexity of the disease process. In this work, we test the hypothesis that C. pneumoniae-infected macrophages lodged in the subendothelial matrix contribute to atherogenesis through pro-inflammatory factors and by cell-matrix interactions. To test this hypothesis, we used a 3D infection model with freshly isolated PBMC infected with live C. pneumoniae and chlamydial antigens encapsulated in a collagen matrix, and analyzed the inflammatory responses over 7 days. We observed that infection significantly upregulates the secretion of cytokines TNF-α, IL-1β, IL-8, MCP-1, MMP, oxidative stress, transendothelial permeability, and LDL uptake. We also observed that infected macrophages form clusters, and substantially modify the microstructure and mechanical properties of the extracellular matrix to an atherogenic phenotype. Together, our data demonstrates that C. pneumoniae-infection drives a low-grade, sustained inflammation that may predispose in the transformation to atherosclerotic foci.
Cellular Immunology | 2017
Amit Kumar Saha; Marzieh Mousavi; Shatha F. Dallo; Shankar J. Evani; Anand K. Ramasubramanian
Cholesterol content influences several important physiological functions due to its effect on membrane receptors. In this work, we tested the hypothesis that cellular cholesterol alters chemotactic response of monocytes to Monocyte Chemoattractant Protein-1 (MCP-1) due to their effect on the receptor, CCR2. We used Methyl-β-cyclodextrin (MβCD) to alter the baseline cholesterol in human monocytic cell line THP-1, and evaluated their chemotactic response to MCP-1. Compared to untreated cells, cholesterol enrichment increased the number of monocytes transmigrated in response to MCP-1 while depletion had opposite effect. Using imaging flow cytometry, we established that these differences were due to alterations in expression levels, but not the surface distribution, of CCR2.
Cellular and Molecular Bioengineering | 2013
Shankar J. Evani; Shatha F. Dallo; Ashlesh K. Murthy; Anand K. Ramasubramanian
Archive | 2011
Shankar J. Evani; Anand K. Ramasubramanian
Collaboration
Dive into the Shankar J. Evani's collaboration.
University of Texas Health Science Center at San Antonio
View shared research outputs