Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shankar Thangamani is active.

Publication


Featured researches published by Shankar Thangamani.


Scientific Reports | 2015

Repurposing ebselen for treatment of multidrug-resistant staphylococcal infections.

Shankar Thangamani; Waleed Younis; Mohamed N. Seleem

Novel antimicrobials and new approaches to developing them are urgently needed. Repurposing already-approved drugs with well-characterized toxicology and pharmacology is a novel way to reduce the time, cost, and risk associated with antibiotic innovation. Ebselen, an organoselenium compound, is known to be clinically safe and has a well-known pharmacology profile. It has shown potent bactericidal activity against multidrug-resistant clinical isolates of staphylococcus aureus, including methicillin- and vancomycin-resistant S. aureus (MRSA and VRSA). We demonstrated that ebselen acts through inhibition of protein synthesis and subsequently inhibited toxin production in MRSA. Additionally, ebselen was remarkably active and significantly reduced established staphylococcal biofilms. The therapeutic efficacy of ebselen was evaluated in a mouse model of staphylococcal skin infections. Ebselen 1% and 2% significantly reduced the bacterial load and the levels of the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1 beta (IL-1β), and monocyte chemo attractant protein-1 (MCP-1) in MRSA USA300 skin lesions. Furthermore, it acts synergistically with traditional antimicrobials. This study provides evidence that ebselen has great potential for topical treatment of MRSA skin infections and lays the foundation for further analysis and development of ebselen as a potential treatment for multidrug-resistant staphylococcal infections.


European Journal of Immunology | 2013

Retinoic acid promotes the development of Arg1‐expressing dendritic cells for the regulation of T‐cell differentiation

Jinsam Chang; Shankar Thangamani; Myung H. Kim; Benjamin Ulrich; Sidney M. Morris; Chang H. Kim

Arginase I (Arg1), an enzyme expressed by many cell types including myeloid cells, can regulate immune responses. Expression of Arg1 in myeloid cells is regulated by a number of cytokines and tissue factors that influence cell development and activation. Retinoic acid, produced from vitamin A, regulates the homing and differentiation of lymphocytes and plays important roles in the regulation of immunity and immune tolerance. We report here that optimal expression of Arg1 in DCs requires retinoic acid. Induction of Arg1 by retinoic acid is directly mediated by retinoic acid‐responsive elements in the 5′ noncoding region of the Arg1 gene. Arg1, produced by DCs in response to retinoic acid, promotes the generation of FoxP3+ regulatory T (Treg) cells. Importantly, blocking the retinoic acid receptor makes DCs hypo‐responsive to known inducers of Arg1 such as IL‐4 and GM‐CSF in Arg1 expression. We found that intestinal CD103+ DCs that are known to produce retinoic acid highly express Arg1. Our results establish retinoic acid as a key signal in expression of Arg1 in DCs.


Journal of Experimental Medicine | 2013

BATF is required for normal expression of gut-homing receptors by T helper cells in response to retinoic acid

Chuanwu Wang; Shankar Thangamani; Myunghoo Kim; Bon-Hee Gu; Jee H. Lee; Elizabeth J. Taparowsky; Chang H. Kim

Induction of gut-homing receptors in T cells in response to retinoic acid requires the transcription factor BATF.


PLOS ONE | 2015

Repurposing clinical molecule ebselen to combat drug resistant pathogens

Shankar Thangamani; Waleed Younis; Mohamed N. Seleem

Without a doubt, our current antimicrobials are losing the battle in the fight against newly-emerged multidrug-resistant pathogens. There is a pressing, unmet need for novel antimicrobials and novel approaches to develop them; however, it is becoming increasingly difficult and costly to develop new antimicrobials. One strategy to reduce the time and cost associated with antimicrobial innovation is drug repurposing, which is to find new applications outside the scope of the original medical indication of the drug. Ebselen, an organoselenium clinical molecule, possesses potent antimicrobial activity against clinical multidrug-resistant Gram-positive pathogens, including Staphylococcus, Streptococcus, and Enterococcus, but not against Gram-negative pathogens. Moreover, the activity of ebselen against Gram-positive pathogens exceeded those activities determined for vancomycin and linezolid, drugs of choice for treatment of Enterococcus and Staphylococcus infections. The minimum inhibitory concentrations of ebselen at which 90% of clinical isolates of Enterococcus and Staphylococcus were inhibited (MIC90) were found to be 0.5 and 0.25 mg/L, respectively. Ebselen showed significant clearance of intracellular methicillin-resistant S. aureus (MRSA) in comparison to vancomycin and linezolid. We demonstrated that ebselen inhibits the bacterial translation process without affecting mitochondrial biogenesis. Additionally, ebselen was found to exhibit excellent activity in vivo in a Caenorhabditis elegans MRSA-infected whole animal model. Finally, ebselen showed synergistic activities with conventional antimicrobials against MRSA. Taken together, our results demonstrate that ebselen, with its potent antimicrobial activity and safety profiles, can be potentially used to treat multidrug resistant Gram-positive bacterial infections alone or in combination with other antibiotics and should be further clinically evaluated.


Scientific Reports | 2016

Antibacterial activity and mechanism of action of auranofin against multi-drug resistant bacterial pathogens

Shankar Thangamani; Haroon Mohammad; Mostafa F. N. Abushahba; Tiago J. P. Sobreira; Victoria Hedrick; Lake N. Paul; Mohamed N. Seleem

Traditional methods employed to discover new antibiotics are both a time-consuming and financially-taxing venture. This has led researchers to mine existing libraries of clinical molecules in order to repurpose old drugs for new applications (as antimicrobials). Such an effort led to the discovery of auranofin, a drug initially approved as an anti-rheumatic agent, which also possesses potent antibacterial activity in a clinically achievable range. The present study demonstrates auranofin’s antibacterial activity is a complex process that involves inhibition of multiple biosynthetic pathways including cell wall, DNA, and bacterial protein synthesis. We also confirmed that the lack of activity of auranofin observed against Gram-negative bacteria is due to the permeability barrier conferred by the outer membrane. Auranofin’s ability to suppress bacterial protein synthesis leads to significant reduction in the production of key methicillin-resistant Staphylococcus aureus (MRSA) toxins. Additionally, auranofin is capable of eradicating intracellular MRSA present inside infected macrophage cells. Furthermore, auranofin is efficacious in a mouse model of MRSA systemic infection and significantly reduces the bacterial load in murine organs including the spleen and liver. Collectively, this study provides valuable evidence that auranofin has significant promise to be repurposed as a novel antibacterial for treatment of invasive bacterial infections.


Scientific Reports | 2015

Exploring simvastatin, an antihyperlipidemic drug, as a potential topical antibacterial agent

Shankar Thangamani; Haroon Mohammad; Mostafa F. N. Abushahba; Maha I. Hamed; Tiago J. P. Sobreira; Victoria Hedrick; Lake N. Paul; Mohamed N. Seleem

The rapid rise of bacterial resistance to traditional antibiotics combined with the decline in discovery of novel antibacterial agents has created a global public health crisis. Repurposing existing drugs presents an alternative strategy to potentially expedite the discovery of new antimicrobial drugs. The present study demonstrates that simvastatin, an antihyperlipidemic drug exhibited broad-spectrum antibacterial activity against important Gram-positive (including methicillin-resistant Staphylococcus aureus (MRSA)) and Gram-negative pathogens (once the barrier imposed by the outer membrane was permeabilized). Proteomics and macromolecular synthesis analyses revealed that simvastatin inhibits multiple biosynthetic pathways and cellular processes in bacteria, including selective interference of bacterial protein synthesis. This property appears to assist in simvastatin’s ability to suppress production of key MRSA toxins (α-hemolysin and Panton-Valentine leucocidin) that impair healing of infected skin wounds. A murine MRSA skin infection experiment confirmed that simvastatin significantly reduces the bacterial burden and inflammatory cytokines in the infected wounds. Additionally, simvastatin exhibits excellent anti-biofilm activity against established staphylococcal biofilms and demonstrates the ability to be combined with topical antimicrobials currently used to treat MRSA skin infections. Collectively the present study lays the foundation for further investigation of repurposing simvastatin as a topical antibacterial agent to treat skin infections.


Frontiers in Microbiology | 2015

Repurposing celecoxib as a topical antimicrobial agent

Shankar Thangamani; Waleed Younis; Mohamed N. Seleem

There is an urgent need for new antibiotics and alternative strategies to combat multidrug-resistant bacterial pathogens, which are a growing clinical issue. Repurposing existing approved drugs with known pharmacology and toxicology is an alternative strategy to accelerate antimicrobial research and development. In this study, we show that celecoxib, a marketed inhibitor of cyclooxygenase-2, exhibits broad-spectrum antimicrobial activity against Gram-positive pathogens from a variety of genera, including Staphylococcus, Streptococcus, Listeria, Bacillus, and Mycobacterium, but not against Gram-negative pathogens. However, celecoxib is active against all of the Gram-negative bacteria tested, including strains of, Acinetobacter, and Pseudomonas, when their intrinsic resistance is artificially compromised by outer membrane permeabilizing agents such as colistin. The effect of celecoxib on incorporation of radioactive precursors into macromolecules in Staphylococcus aureus was examined. The primary antimicrobial mechanism of action of celecoxib was the dose-dependent inhibition of RNA, DNA, and protein synthesis. Further, we demonstrate the in vivo efficacy of celecoxib in a methicillin-resistant S. aureus (MRSA) infected Caenorhabditis elegans whole animal model. Topical application of celecoxib (1 and 2%) significantly reduced the mean bacterial count in a mouse model of MRSA skin infection. Further, celecoxib decreased the levels of all inflammatory cytokines tested, including tumor necrosis factor-α, interleukin-6, interleukin-1 beta, and monocyte chemo attractant protein-1 in wounds caused by MRSA infection. Celecoxib also exhibited synergy with many conventional antimicrobials when tested against four clinical isolates of S. aureus. Collectively, these results demonstrate that celecoxib alone, or in combination with traditional antimicrobials, has a potential to use as a topical drug for the treatment of bacterial skin infections.


Scientific Reports | 2016

Impact of different cell penetrating peptides on the efficacy of antisense therapeutics for targeting intracellular pathogens.

Mostafa F. N. Abushahba; Haroon Mohammad; Shankar Thangamani; Asmaa A.A. Hussein; Mohamed N. Seleem

There is a pressing need for novel and innovative therapeutic strategies to address infections caused by intracellular pathogens. Peptide nucleic acids (PNAs) present a novel method to target intracellular pathogens due to their unique mechanism of action and their ability to be conjugated to cell penetrating peptides (CPP) to overcome challenging delivery barriers. In this study, we targeted the RNA polymerase α subunit (rpoA) using a PNA that was covalently conjugated to five different CPPs. Changing the conjugated CPP resulted in a pronounced improvement in the antibacterial activity observed against Listeria monocytogenes in vitro, in cell culture, and in a Caenorhabditis elegans (C. elegans) infection model. Additionally, a time-kill assay revealed three conjugated CPPs rapidly kill Listeria within 20 minutes without disrupting the bacterial cell membrane. Moreover, rpoA gene silencing resulted in suppression of its message as well as reduced expression of other critical virulence genes (Listeriolysin O, and two phospholipases plcA and plcB) in a concentration-dependent manner. Furthermore, PNA-inhibition of bacterial protein synthesis was selective and did not adversely affect mitochondrial protein synthesis. This study provides a foundation for improving and developing PNAs conjugated to CPPs to better target intracellular pathogens.


Biochimica et Biophysica Acta | 2017

Ebselen exerts antifungal activity by regulating glutathione (GSH) and reactive oxygen species (ROS) production in fungal cells

Shankar Thangamani; Hassan E. Eldesouky; Haroon Mohammad; Pete E. Pascuzzi; Larisa V. Avramova; Tony R. Hazbun; Mohamed N. Seleem

BACKGROUND Ebselen, an organoselenium compound and a clinically safe molecule has been reported to possess potent antifungal activity, but its antifungal mechanism of action and in vivo antifungal activity remain unclear. METHODS The antifungal effect of ebselen was tested against Candida albicans, C. glabrata, C. tropicalis, C. parapsilosis, Cryptococcus neoformans, and C. gattii clinical isolates. Chemogenomic profiling and biochemical assays were employed to identify the antifungal target of ebselen. Ebselens antifungal activity in vivo was investigated in a Caenorhabditis elegans animal model. RESULTS Ebselen exhibits potent antifungal activity against both Candida spp. and Cryptococcus spp., at concentrations ranging from 0.5 to 2μg/ml. Ebselen rapidly eradicates a high fungal inoculum within 2h of treatment. Investigation of the drugs antifungal mechanism of action indicates that ebselen depletes intracellular glutathione (GSH) levels, leading to increased production of reactive oxygen species (ROS), and thereby disturbs the redox homeostasis in fungal cells. Examination of ebselens in vivo antifungal activity in two Caenorhabditis elegans models of infection demonstrate that ebselen is superior to conventional antifungal drugs (fluconazole, flucytosine and amphotericin) in reducing Candida and Cryptococcus fungal load. CONCLUSION Ebselen possesses potent antifungal activity against clinically relevant isolates of both Candida and Cryptococcus by regulating GSH and ROS production. The potent in vivo antifungal activity of ebselen supports further investigation for repurposing it for use as an antifungal agent. GENERAL SIGNIFICANCE The present study shows that ebselen targets glutathione and also support that glutathione as a potential target for antifungal drug development.


International Journal of Antimicrobial Agents | 2016

Repurposing auranofin for the treatment of cutaneous staphylococcal infections

Shankar Thangamani; Haroon Mohammad; Mostafa F. N. Abushahba; Tiago J. P. Sobreira; Mohamed N. Seleem

The scourge of multidrug-resistant bacterial infections necessitates the urgent development of novel antimicrobials to address this public health challenge. Drug repurposing is a proven strategy to discover new antimicrobial agents; given that these agents have undergone extensive toxicological and pharmacological analysis, repurposing is an effective method to reduce the time, cost and risk associated with traditional antibiotic innovation. In this study, the in vitro and in vivo antibacterial activities of an antirheumatic drug, auranofin, was investigated against multidrug-resistant Staphylococcus aureus. The results indicated that auranofin possesses potent antibacterial activity against all tested strains of S. aureus, including meticillin-resistant S. aureus (MRSA), vancomycin-intermediate S. aureus (VISA) and vancomycin-resistant S. aureus (VRSA), with minimum inhibitory concentrations (MICs) ranging from 0.0625μg/mL to 0.125μg/mL. In vivo, topical auranofin proved superior to conventional antimicrobials, including fusidic acid and mupirocin, in reducing the mean bacterial load in infected wounds in a murine model of MRSA skin infection. In addition to reducing the bacterial load, topical treatment of auranofin greatly reduced the production of inflammatory cytokines, including tumour necrosis factor-α (TNFα), interleukin-6 (IL-6), interleukin-1 beta (IL-1β) and monocyte chemoattractant protein-1 (MCP-1), in infected skin lesions. Moreover, auranofin significantly disrupted established in vitro biofilms of S. aureus and Staphylococcus epidermidis, more so than the traditional antimicrobials linezolid and vancomycin. Taken together, these results support that auranofin has potential to be repurposed as a topical antimicrobial agent for the treatment of staphylococcal skin and wound infections.

Collaboration


Dive into the Shankar Thangamani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge