Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shannon L. LaDeau is active.

Publication


Featured researches published by Shannon L. LaDeau.


Nature | 2007

West Nile virus emergence and large-scale declines of North American bird populations

Shannon L. LaDeau; A. Marm Kilpatrick; Peter P. Marra

Emerging infectious diseases present a formidable challenge to the conservation of native species in the twenty-first century. Diseases caused by introduced pathogens have had large impacts on species abundances, including the American chestnut, Hawaiian bird species and many amphibians. Changes in host population sizes can lead to marked shifts in community composition and ecosystem functioning. However, identifying the impacts of an introduced disease and distinguishing it from other forces that influence population dynamics (for example, climate) is challenging and requires abundance data that extend before and after the introduction. Here we use 26 yr of Breeding Bird Survey (BBS) data to determine the impact of West Nile virus (WNV) on 20 potential avian hosts across North America. We demonstrate significant changes in population trajectories for seven species from four families that concur with a priori predictions and the spatio-temporal intensity of pathogen transmission. The American crow population declined by up to 45% since WNV arrival, and only two of the seven species with documented impact recovered to pre-WNV levels by 2005. Our findings demonstrate the potential impacts of an invasive species on a diverse faunal assemblage across broad geographical scales, and underscore the complexity of subsequent community response.


New Phytologist | 2010

Re‐assessment of plant carbon dynamics at the Duke free‐air CO2 enrichment site: interactions of atmospheric [CO2] with nitrogen and water availability over stand development

Heather R. McCarthy; Ram Oren; Kurt H. Johnsen; Anne Gallet-Budynek; Seth G. Pritchard; Charles W. Cook; Shannon L. LaDeau; Robert B. Jackson; Adrien C. Finzi

*The potential for elevated [CO(2)]-induced changes to plant carbon (C) storage, through modifications in plant production and allocation of C among plant pools, is an important source of uncertainty when predicting future forest function. Utilizing 10 yr of data from the Duke free-air CO(2) enrichment site, we evaluated the dynamics and distribution of plant C. *Discrepancy between heights measured for this study and previously calculated heights required revision of earlier allometrically based biomass determinations, resulting in higher (up to 50%) estimates of standing biomass and net primary productivity than previous assessments. *Generally, elevated [CO(2)] caused sustained increases in plant biomass production and in standing C, but did not affect the partitioning of C among plant biomass pools. Spatial variation in net primary productivity and its [CO(2)]-induced enhancement was controlled primarily by N availability, with the difference between precipitation and potential evapotranspiration explaining most interannual variability. Consequently, [CO(2)]-induced net primary productivity enhancement ranged from 22 to 30% in different plots and years. *Through quantifying the effects of nutrient and water availability on the forest productivity response to elevated [CO(2)], we show that net primary productivity enhancement by elevated [CO(2)] is not uniform, but rather highly dependent on the availability of other growth resources.


Ecology | 2006

PREDICTING BIODIVERSITY CHANGE: OUTSIDE THE CLIMATE ENVELOPE, BEYOND THE SPECIES–AREA CURVE

Inés Ibáñez; James S. Clark; Michael C. Dietze; Kenneth J. Feeley; Michelle H. Hersh; Shannon L. LaDeau; Allen McBride; Nathan E. Welch; Michael S. Wolosin

Efforts to anticipate threats to biodiversity take the form of species richness predictions (SRPs) based on simple correlations with current climate and habitat area. We review the major approaches that have been used for SRP, species-area curves and climate envelopes, and suggest that alternative research efforts may provide more understanding and guidance for management. Extinction prediction suffers from a number of limitations related to data and the novelty of future environments. We suggest additional attention to (1) identification of variables related to biodiversity that are diagnostic and potentially more predictable than extinction, (2) constraints on species dispersal and reproduction that will determine population persistence and range shifts, including limited sources or potential immigrants for many regions, and (3) changes in biotic interactions and phenology. We suggest combinations of observational and experimental approaches within a framework available for ingesting heterogeneous data sources. Together, these recommendations amount to a shift in emphasis from prediction of extinction numbers to identification of vulnerabilities and leading indicators of change, as well as suggestions for surveillance tools needed to evaluate important variables and the experiments likely to provide most insight.


The Auk | 2007

ECOLOGY OF WEST NILE VIRUS TRANSMISSION AND ITS IMPACT ON BIRDS IN THE WESTERN HEMISPHERE

A. Marm Kilpatrick; Shannon L. LaDeau; Peter P. Marra

W N (WNV) was introduced into the western hemisphere in 1999 near New York City, where it caused substantial mortality in corvids and a small number of human cases (Nash et al. 2001). Genetic analysis showed that the introduced virus was most similar to a genotype isolated in Israel in 1998 (Lanciott i et al. 1999), and more virulent for some bird species (but not for others) than genotypes from Kenya and Australia (Kunjin virus) (Brault et al. 2004, 2007; Langevin et al. 2005). The virus is a plussense single-stranded RNA virus in the family Flaviviridae, which also includes Japanese encephalitis, St. Louis encephalitis, yellow fever, and dengue fever viruses (Hayes 1989). From 1999 to 2006, WNV caused 26,274 reported human cases in the United States and Canada, including 9,942 cases of encephalitis, and 1,008 deaths (Centers for Disease Control and Prevention [CDC] 2007, Health Canada 2007). The actual number of infections, based on serosurveys, is estimated to be more than 1.4 million, with ∼280,000 illnesses (Petersen and Hayes 2004, CDC 2007). West Nile virus has also caused widespread disease in horses in North America (with ∼40% of cases being fatal) and tens of thousands of deaths before the advent of vaccination (Hall and Khromykh 2004). Several human vaccines are being developed, but so far none have been approved for use by the Federal Drug Administration (FDA) (Kramer et al. 2007). In contrast to the situation in North America, few human or horse illnesses have been observed in the tropics. The reasons for the absence of WNV in the tropics are unknown, but several hypothetical explanations have been put forth, including the idea that protective immunity has been conferred from other circulating fl aviviruses, diff erences in the avian-host and mosquito-vector communities, and diff erences in the virulence of the virus when it circulates in the tropics (Tesh et al. 2002, Weaver and Barrett 2004, Fang and Reisen 2006, Komar and Clark 2006). Substantial research has been done on many aspects of WNV virology, ecology, and public health since its introduction in 1999. There have been several recent reviews of the ecology of WNV transmission (Komar 2003, Marra et al. 2004, Weaver and Barrett 2004, Hayes et al. 2005), and a large body of literature is available on a closely related virus, the St. Louis encephalitis virus (Monath 1980). However, since the most recent reviews were published, substantial work has been done that greatly increases our understanding of the distribution and ecology of transmission of this virus and its eff ect on 3E-mail: [email protected] The Auk 124(4):1121–1136, 2007


Ecological Applications | 2011

Ecological forecasting and data assimilation in a data‐rich era

Yiqi Luo; Kiona Ogle; Colin Tucker; Shenfeng Fei; Chao Gao; Shannon L. LaDeau; James S. Clark; David S. Schimel

Several forces are converging to transform ecological research and increase its emphasis on quantitative forecasting. These forces include (1) dramatically increased volumes of data from observational and experimental networks, (2) increases in computational power, (3) advances in ecological models and related statistical and optimization methodologies, and most importantly, (4) societal needs to develop better strategies for natural resource management in a world of ongoing global change. Traditionally, ecological forecasting has been based on process-oriented models, informed by data in largely ad hoc ways. Although most ecological models incorporate some representation of mechanistic processes, todays models are generally not adequate to quantify real-world dynamics and provide reliable forecasts with accompanying estimates of uncertainty. A key tool to improve ecological forecasting and estimates of uncertainty is data assimilation (DA), which uses data to inform initial conditions and model parameters, thereby constraining a model during simulation to yield results that approximate reality as closely as possible. This paper discusses the meaning and history of DA in ecological research and highlights its role in refining inference and generating forecasts. DA can advance ecological forecasting by (1) improving estimates of model parameters and state variables, (2) facilitating selection of alternative model structures, and (3) quantifying uncertainties arising from observations, models, and their interactions. However, DA may not improve forecasts when ecological processes are not well understood or never observed. Overall, we suggest that DA is a key technique for converting raw data into ecologically meaningful products, which is especially important in this era of dramatically increased availability of data from observational and experimental networks.


Ecological Monographs | 2010

High‐dimensional coexistence based on individual variation: a synthesis of evidence

James S. Clark; David E. Bell; Chengjin Chu; Michael C. Dietze; Michelle H. Hersh; Janneke HilleRisLambers; Inés Ibášez; Shannon L. LaDeau; Sean M. McMahon; Jessica Metcalf; Jacqueline E. Mohan; Emily V. Moran; Luke Pangle; Scott Pearson; Carl F. Salk; Zehao Shen; Denis Valle; Peter H. Wyckoff

High biodiversity of forests is not predicted by traditional models, and evidence for trade-offs those models require is limited. High-dimensional regulation (e.g., N factors to regulate N species) has long been recognized as a possible alternative explanation, but it has not be been seriously pursued, because only a few limiting resources are evident for trees, and analysis of multiple interactions is challenging. We develop a hierarchical model that allows us to synthesize data from long-term, experimental, data sets with processes that control growth, maturation, fecundity, and survival. We allow for uncertainty at all stages and variation among 26 000 individuals and over time, including 268 000 tree years, for dozens of tree species. We estimate population-level parameters that apply at the species level and the interactions among latent states, i.e., the demographic rates for each individual, every year. The former show that the traditional trade-offs used to explain diversity are not present. Demographic rates overlap among species, and they do not show trends consistent with maintenance of diversity by simple mechanisms (negative correlations and limiting similarity). However, estimates of latent states at the level of individuals and years demonstrate that species partition environmental variation. Correlations between responses to variation in time are high for individuals of the same species, but not for individuals of different species. We demonstrate that these relationships are pervasive, providing strong evidence that high- dimensional regulation is critical for biodiversity regulation.


Ecological Monographs | 2007

EXPLOITING TEMPORAL VARIABILITY TO UNDERSTAND TREE RECRUITMENT RESPONSE TO CLIMATE CHANGE

Inés Ibáñez; James S. Clark; Shannon L. LaDeau; Janneke Hille Ris Lambers

Predicting vegetation shifts under climate change is a challenging endeavor, given the complex interactions between biotic and abiotic variables that influence demographic rates. To determine how current trends and variation in climate change affect seedling establishment, we analyzed demographic responses to spatiotemporal variation to temperature and soil moisture in the southern Appalachian Mountains. We monitored seedling establishment for 10 years in five plots located along an elevational gradient of five dominant tree species: Acer rubrum, Betula spp., Liriodendron tulipifera, Nyssa sylvatica, and Quercus rubra. A hierarchical Bayes model allowed us to incorporate different sources of information, observation errors, and the inherent variability of the establishment process. From our analysis, spring temperatures and heterogeneity in soil moisture emerge as key drivers, and they act through nonlinear population demographic processes. We found that all species benefited from warmer springs, in particular the species found on dry slopes, N. sylvatica, and those dominant at higher elevations, Betula spp. and Q. rubra. This last species also benefited from dry environments. Conversely, L. tulipifera, which is abundant on mesic sites, experienced highest establishment rates at high moisture. The mechanisms behind these results may differ among species. Higher temperatures are apparently more important for some, while dry conditions and reduced pathogenic attacks on their seeds and new seedlings have a large impact for others. Our results suggest that only communities found at higher elevations are in danger of regional extinction when their habitats disappear given the current climatic trends. We conclude that the recruitment dynamics of the communities where these species are dominant could be affected by minor changes in climate in ways that cannot be predicted using only climate envelopes, which use different variables and miss the nonlinearities.


Philosophical Transactions of the Royal Society B | 2015

Climate, environmental and socio-economic change: weighing up the balance in vector-borne disease transmission

Paul E. Parham; Joanna Waldock; George K. Christophides; Deborah Hemming; Folashade B. Agusto; Katherine J. Evans; Nina H. Fefferman; Holly Gaff; Abba B. Gumel; Shannon L. LaDeau; Suzanne Lenhart; Ronald E. Mickens; Elena N. Naumova; Richard S. Ostfeld; Paul D. Ready; Matthew B. Thomas; Jorge X. Velasco-Hernandez; Edwin Michael

Arguably one of the most important effects of climate change is the potential impact on human health. While this is likely to take many forms, the implications for future transmission of vector-borne diseases (VBDs), given their ongoing contribution to global disease burden, are both extremely important and highly uncertain. In part, this is owing not only to data limitations and methodological challenges when integrating climate-driven VBD models and climate change projections, but also, perhaps most crucially, to the multitude of epidemiological, ecological and socio-economic factors that drive VBD transmission, and this complexity has generated considerable debate over the past 10–15 years. In this review, we seek to elucidate current knowledge around this topic, identify key themes and uncertainties, evaluate ongoing challenges and open research questions and, crucially, offer some solutions for the field. Although many of these challenges are ubiquitous across multiple VBDs, more specific issues also arise in different vector–pathogen systems.


Ecological Applications | 2016

Nonnative forest insects and pathogens in the United States: Impacts and policy options

Gary M. Lovett; Marissa Weiss; Andrew M. Liebhold; Thomas P. Holmes; Brian Leung; Kathy Fallon Lambert; David A. Orwig; Faith T. Campbell; Jonathan Rosenthal; Deborah G. McCullough; Radka Wildova; Matthew P. Ayres; Charles D. Canham; David R. Foster; Shannon L. LaDeau; Troy Weldy

Abstract We review and synthesize information on invasions of nonnative forest insects and diseases in the United States, including their ecological and economic impacts, pathways of arrival, distribution within the United States, and policy options for reducing future invasions. Nonnative insects have accumulated in United States forests at a rate of ~2.5 per yr over the last 150 yr. Currently the two major pathways of introduction are importation of live plants and wood packing material such as pallets and crates. Introduced insects and diseases occur in forests and cities throughout the United States, and the problem is particularly severe in the Northeast and Upper Midwest. Nonnative forest pests are the only disturbance agent that has effectively eliminated entire tree species or genera from United States forests within decades. The resulting shift in forest structure and species composition alters ecosystem functions such as productivity, nutrient cycling, and wildlife habitat. In urban and suburban areas, loss of trees from streets, yards, and parks affects aesthetics, property values, shading, stormwater runoff, and human health. The economic damage from nonnative pests is not yet fully known, but is likely in the billions of dollars per year, with the majority of this economic burden borne by municipalities and residential property owners. Current policies for preventing introductions are having positive effects but are insufficient to reduce the influx of pests in the face of burgeoning global trade. Options are available to strengthen the defenses against pest arrival and establishment, including measures taken in the exporting country prior to shipment, measures to ensure clean shipments of plants and wood products, inspections at ports of entry, and post‐entry measures such as quarantines, surveillance, and eradication programs. Improved data collection procedures for inspections, greater data accessibility, and better reporting would support better evaluation of policy effectiveness. Lack of additional action places the nation, local municipalities, and property owners at high risk of further damaging and costly invasions. Adopting stronger policies to reduce establishments of new forest insects and diseases would shift the major costs of control to the source and alleviate the economic burden now borne by homeowners and municipalities.


Ecology | 2011

Range-wide effects of breeding- and nonbreeding-season climate on the abundance of a Neotropical migrant songbird

Scott Wilson; Shannon L. LaDeau; Anders P. Tøttrup; Peter P. Marra

Geographic variation in the population dynamics of a species can result from regional variability in climate and how it affects reproduction and survival. Identifying such effects for migratory birds requires the integration of population models with knowledge of migratory connectivity between breeding and nonbreeding areas. We used Bayesian hierarchical models with 26 years of Breeding Bird Survey data (1982-2007) to investigate the impacts of breeding- and nonbreeding-season climate on abundance of American Redstarts (Setophaga ruticilla) across the species range. We focused on 15 populations defined by Bird Conservation Regions, and we included variation across routes and observers as well as temporal trends and climate effects. American Redstart populations that breed in eastern North America showed increased abundance following winters with higher plant productivity in the Caribbean where they are expected to overwinter. In contrast, western breeding populations showed little response to conditions in their expected wintering areas in west Mexico, perhaps reflecting lower migratory connectivity or differential effects of winter rainfall on individuals across the species range. Unlike the case with winter climate, we found few effects of temperature prior to arrival in spring (March-April) or during the nesting period (May-June) on abundance the following year. Eight populations showed significant changes in abundance, with the steepest declines in the Atlantic Northern Forest (-3.4%/yr) and the greatest increases in the Prairie Hardwood Transition (4%/yr). This study emphasizes how the effects of climate on populations of migratory birds are context dependent and can vary depending on geographic location and the period of the annual cycle. Such knowledge is essential for predicting regional variation in how populations of a species might vary in their response to climate change.

Collaboration


Dive into the Shannon L. LaDeau's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter P. Marra

Smithsonian Conservation Biology Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Holly Gaff

Old Dominion University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge