Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shannon L. Planer is active.

Publication


Featured researches published by Shannon L. Planer.


Nature | 2013

Immune clearance of highly pathogenic SIV infection

Scott G. Hansen; Michael Piatak; Abigail B. Ventura; Colette M. Hughes; Roxanne M. Gilbride; Julia C. Ford; Kelli Oswald; Rebecca Shoemaker; Yuan Li; Matthew S. Lewis; Awbrey N. Gilliam; Guangwu Xu; Nathan Whizin; Benjamin J. Burwitz; Shannon L. Planer; John M. Turner; Alfred W. Legasse; Michael K. Axthelm; Jay A. Nelson; Klaus Früh; Jonah B. Sacha; Jacob D. Estes; Brandon F. Keele; Paul T. Edlefsen; Jeffrey D. Lifson; Louis J. Picker

Established infections with the human and simian immunodeficiency viruses (HIV and SIV, respectively) are thought to be permanent with even the most effective immune responses and antiretroviral therapies only able to control, but not clear, these infections. Whether the residual virus that maintains these infections is vulnerable to clearance is a question of central importance to the future management of millions of HIV-infected individuals. We recently reported that approximately 50% of rhesus macaques (RM; Macaca mulatta) vaccinated with SIV protein-expressing rhesus cytomegalovirus (RhCMV/SIV) vectors manifest durable, aviraemic control of infection with the highly pathogenic strain SIVmac239 (ref. 5). Here we show that regardless of the route of challenge, RhCMV/SIV vector-elicited immune responses control SIVmac239 after demonstrable lymphatic and haematogenous viral dissemination, and that replication-competent SIV persists in several sites for weeks to months. Over time, however, protected RM lost signs of SIV infection, showing a consistent lack of measurable plasma- or tissue-associated virus using ultrasensitive assays, and a loss of T-cell reactivity to SIV determinants not in the vaccine. Extensive ultrasensitive quantitative PCR and quantitative PCR with reverse transcription analyses of tissues from RhCMV/SIV vector-protected RM necropsied 69–172 weeks after challenge did not detect SIV RNA or DNA sequences above background levels, and replication-competent SIV was not detected in these RM by extensive co-culture analysis of tissues or by adoptive transfer of 60 million haematolymphoid cells to naive RM. These data provide compelling evidence for progressive clearance of a pathogenic lentiviral infection, and suggest that some lentiviral reservoirs may be susceptible to the continuous effector memory T-cell-mediated immune surveillance elicited and maintained by cytomegalovirus vectors.


Journal of Experimental Medicine | 2007

Progressive CD4+ central–memory T cell decline results in CD4+ effector–memory insufficiency and overt disease in chronic SIV infection

Afam A. Okoye; Martin Meier-Schellersheim; Jason M. Brenchley; Shoko I. Hagen; Joshua M. Walker; Mukta Rohankhedkar; Richard Lum; John B. Edgar; Shannon L. Planer; Alfred W. Legasse; Andrew W. Sylwester; Michael Piatak; Jeffrey D. Lifson; Vernon C. Maino; Donald L. Sodora; Michael K. Axthelm; Zvi Grossman; Louis J. Picker

Primary simian immunodeficiency virus (SIV) infections of rhesus macaques result in the dramatic depletion of CD4+ CCR5+ effector–memory T (TEM) cells from extra-lymphoid effector sites, but in most infections, an increased rate of CD4+ memory T cell proliferation appears to prevent collapse of effector site CD4+ TEM cell populations and acute-phase AIDS. Eventually, persistent SIV replication results in chronic-phase AIDS, but the responsible mechanisms remain controversial. Here, we demonstrate that in the chronic phase of progressive SIV infection, effector site CD4+ TEM cell populations manifest a slow, continuous decline, and that the degree of this depletion remains a highly significant correlate of late-onset AIDS. We further show that due to persistent immune activation, effector site CD4+ TEM cells are predominantly short-lived, and that their homeostasis is strikingly dependent on the production of new CD4+ TEM cells from central–memory T (TCM) cell precursors. The instability of effector site CD4+ TEM cell populations over time was not explained by increasing destruction of these cells, but rather was attributable to progressive reduction in their production, secondary to decreasing numbers of CCR5− CD4+ TCM cells. These data suggest that although CD4+ TEM cell depletion is a proximate mechanism of immunodeficiency, the tempo of this depletion and the timing of disease onset are largely determined by destruction, failing production, and gradual decline of CD4+ TCM cells.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Dramatic increase in naïve T cell turnover is linked to loss of naïve T cells from old primates

Luka Čičin-Šain; Ilhem Messaoudi; Byung Park; Noreen Currier; Shannon L. Planer; Miranda Fischer; Shane Tackitt; Dragana Nikolich-Žugich; Alfred W. Legasse; Michael K. Axthelm; Louis J. Picker; Motomi Mori; Janko Nikolich-Žugich

The loss of naïve T cells is a hallmark of immune aging. Although thymic involution is a primary driver of this naïve T cell loss, less is known about the contribution of other mechanisms to the depletion of naïve T cells in aging primates. We examined the role of homeostatic cycling and proliferative expansion in different T cell subsets of aging rhesus macaques (RM). BrdU incorporation and the expression of the G1-M marker Ki-67 were elevated in peripheral naïve CD4 and even more markedly in the naïve CD8 T cells of old, but not young adult, RM. Proliferating naïve cells did not accumulate in old animals. Rather, the relative size of the naïve CD8 T cell compartment correlated inversely to its proliferation rate. Likewise, T cell receptor diversity decreased in individuals with elevated naïve CD8 T cell proliferation. This apparent contradiction was explained by a significant increase in turnover concomitant with the naïve pool loss. The turnover increased exponentially when the naïve CD8 T cell pool decreased below 4% of total blood CD8 cells. These results link the shrinking naïve T cell pool with a dramatic increase in homeostatic turnover, which has the potential to exacerbate the progressive exhaustion of the naïve pool and constrict the T cell repertoire. Thus, homeostatic T cell proliferation exhibits temporal antagonistic pleiotropy, being beneficial to T cell maintenance in adulthood but detrimental to the long-term T cell maintenance in aging individuals.


PLOS Pathogens | 2009

Simian varicella virus infection of rhesus macaques recapitulates essential features of varicella zoster virus infection in humans.

Ilhem Messaoudi; Alexander Barron; Mary Wellish; Flora Engelmann; Alfred W. Legasse; Shannon L. Planer; Donald H. Gilden; Janko Nikolich-Zugich; Ravi Mahalingam

Simian varicella virus (SVV), the etiologic agent of naturally occurring varicella in primates, is genetically and antigenically closely related to human varicella zoster virus (VZV). Early attempts to develop a model of VZV pathogenesis and latency in nonhuman primates (NHP) resulted in persistent infection. More recent models successfully produced latency; however, only a minority of monkeys became viremic and seroconverted. Thus, previous NHP models were not ideally suited to analyze the immune response to SVV during acute infection and the transition to latency. Here, we show for the first time that intrabronchial inoculation of rhesus macaques with SVV closely mimics naturally occurring varicella (chickenpox) in humans. Infected monkeys developed varicella and viremia that resolved 21 days after infection. Months later, viral DNA was detected only in ganglia and not in non-ganglionic tissues. Like VZV latency in human ganglia, transcripts corresponding to SVV ORFs 21, 62, 63 and 66, but not ORF 40, were detected by RT-PCR. In addition, as described for VZV, SVV ORF 63 protein was detected in the cytoplasm of neurons in latently infected monkey ganglia by immunohistochemistry. We also present the first in depth analysis of the immune response to SVV. Infected animals produced a strong humoral and cell-mediated immune response to SVV, as assessed by immunohistology, serology and flow cytometry. Intrabronchial inoculation of rhesus macaques with SVV provides a novel model to analyze viral and immunological mechanisms of VZV latency and reactivation.


Journal of Experimental Medicine | 2009

Profound CD4+/CCR5+ T cell expansion is induced by CD8+ lymphocyte depletion but does not account for accelerated SIV pathogenesis

Afam A. Okoye; Haesun Park; Mukta Rohankhedkar; Lia Coyne-Johnson; Richard Lum; Joshua M. Walker; Shannon L. Planer; Alfred W. Legasse; Andrew W. Sylwester; Michael Piatak; Jeffrey D. Lifson; Donald L. Sodora; Francois Villinger; Michael K. Axthelm; Joern E. Schmitz; Louis J. Picker

Depletion of CD8+ lymphocytes during acute simian immunodeficiency virus (SIV) infection of rhesus macaques (RMs) results in irreversible prolongation of peak-level viral replication and rapid disease progression, consistent with a major role for CD8+ lymphocytes in determining postacute-phase viral replication set points. However, we report that CD8+ lymphocyte depletion is also associated with a dramatic induction of proliferation among CD4+ effector memory T (TEM) cells and, to a lesser extent, transitional memory T (TTrM) cells, raising the question of whether an increased availability of optimal (activated/proliferating), CD4+/CCR5+ SIV “target” cells contributes to this accelerated pathogenesis. In keeping with this, depletion of CD8+ lymphocytes in SIV− RMs led to a sustained increase in the number of potential CD4+ SIV targets, whereas such depletion in acute SIV infection led to increased target cell consumption. However, we found that the excess CD4+ TEM cell proliferation of CD8+ lymphocyte–depleted, acutely SIV-infected RMs was completely inhibited by interleukin (IL)-15 neutralization, and that this inhibition did not abrogate the rapidly progressive infection in these RMs. Moreover, although administration of IL-15 during acute infection induced robust CD4+ TEM and TTrM cell proliferation, it did not recapitulate the viral dynamics of CD8+ lymphocyte depletion. These data suggest that CD8+ lymphocyte function has a larger impact on the outcome of acute SIV infection than the number and/or activation status of target cells available for infection and viral production.


Nature Medicine | 2016

Early short-term treatment with neutralizing human monoclonal antibodies halts SHIV infection in infant macaques

Ann J. Hessell; J. Pablo Jaworski; Erin Epson; Kenta Matsuda; Shilpi Pandey; Christoph A. Kahl; Jason S. Reed; William F. Sutton; Katherine B. Hammond; Tracy Cheever; Philip T. Barnette; Alfred W. Legasse; Shannon L. Planer; Jeffrey J. Stanton; Amarendra Pegu; Xuejun Chen; Don C. Siess; David Burke; Byung Park; Michael K. Axthelm; Anne D. Lewis; Vanessa M. Hirsch; Barney S. Graham; John R. Mascola; Jonah B. Sacha; Nancy L. Haigwood

Prevention of mother-to-child transmission (MTCT) of HIV remains a major objective where antenatal care is not readily accessible. We tested HIV-1–specific human neutralizing monoclonal antibodies (NmAbs) as a post-exposure therapy in an infant macaque model for intrapartum MTCT. One-month-old rhesus macaques were inoculated orally with the simian-human immunodeficiency virus SHIVSF162P3. On days 1, 4, 7 and 10 after virus exposure, we injected animals subcutaneously with NmAbs and quantified systemic distribution of NmAbs in multiple tissues within 24 h after antibody administration. Replicating virus was found in multiple tissues by day 1 in animals that were not treated. All NmAb-treated macaques were free of virus in blood and tissues at 6 months after exposure. We detected no anti-SHIV T cell responses in blood or tissues at necropsy, and no virus emerged after CD8+ T cell depletion. These results suggest that early passive immunotherapy can eliminate early viral foci and thereby prevent the establishment of viral reservoirs.


Journal of Experimental Medicine | 2012

Naive T cells are dispensable for memory CD4+ T cell homeostasis in progressive simian immunodeficiency virus infection

Afam A. Okoye; Mukta Rohankhedkar; Chike O. Abana; Audrie Pattenn; Matthew D. Reyes; Christopher Pexton; Richard Lum; Andrew W. Sylwester; Shannon L. Planer; Alfred W. Legasse; Byung Park; Michael Piatak; Jeffrey D. Lifson; Michael K. Axthelm; Louis J. Picker

Memory CD4+ T cell homeostasis and AIDS progression are independent of naive CD4+ T cells in SIV infection of nonhuman primates.


Journal of Virology | 2011

Deletion of the Monkeypox Virus Inhibitor of Complement Enzymes Locus Impacts the Adaptive Immune Response to Monkeypox Virus in a Nonhuman Primate Model of Infection

Ryan D. Estep; Ilhem Messaoudi; Megan A. O'Connor; Helen Li; Jerald Sprague; Alexander Barron; Flora Engelmann; Bonnie Yen; Michael F. Powers; John M. Jones; Bridget A. Robinson; Beata U. Orzechowska; Minsha Manoharan; Alfred W. Legasse; Shannon L. Planer; Jennifer Wilk; Michael K. Axthelm; Scott W. Wong

ABSTRACT Monkeypox virus (MPXV) is an orthopoxvirus closely related to variola virus, the causative agent of smallpox. Human MPXV infection results in a disease that is similar to smallpox and can also be fatal. Two clades of MPXV have been identified, with viruses of the central African clade displaying more pathogenic properties than those within the west African clade. The monkeypox inhibitor of complement enzymes (MOPICE), which is not expressed by viruses of the west African clade, has been hypothesized to be a main virulence factor responsible for increased pathogenic properties of central African strains of MPXV. To gain a better understanding of the role of MOPICE during MPXV-mediated disease, we compared the host adaptive immune response and disease severity following intrabronchial infection with MPXV-Zaire (n = 4), or a recombinant MPXV-Zaire (n = 4) lacking expression of MOPICE in rhesus macaques (RM). Data presented here demonstrate that infection of RM with MPXV leads to significant viral replication in the peripheral blood and lungs and results in the induction of a robust and sustained adaptive immune response against the virus. More importantly, we show that the loss of MOPICE expression results in enhanced viral replication in vivo, as well as a dampened adaptive immune response against MPXV. Taken together, these findings suggest that MOPICE modulates the anti-MPXV immune response and that this protein is not the sole virulence factor of the central African clade of MPXV.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Neisseria infection of rhesus macaques as a model to study colonization, transmission, persistence, and horizontal gene transfer

Nathan J. Weyand; Anne M. Wertheimer; Theodore Hobbs; Jennifer L. Sisko; Nyiawung A. Taku; Lindsay D. Gregston; Susan Clary; Dustin L. Higashi; Nicolas Biais; Lewis M. Brown; Shannon L. Planer; Alfred W. Legasse; Michael K. Axthelm; Scott W. Wong; Magdalene So

The strict tropism of many pathogens for man hampers the development of animal models that recapitulate important microbe–host interactions. We developed a rhesus macaque model for studying Neisseria–host interactions using Neisseria species indigenous to the animal. We report that Neisseria are common inhabitants of the rhesus macaque. Neisseria isolated from the rhesus macaque recolonize animals after laboratory passage, persist in the animals for at least 72 d, and are transmitted between animals. Neisseria are naturally competent and acquire genetic markers from each other in vivo, in the absence of selection, within 44 d after colonization. Neisseria macacae encodes orthologs of known or presumed virulence factors of human-adapted Neisseria, as well as current or candidate vaccine antigens. We conclude that the rhesus macaque model will allow studies of the molecular mechanisms of Neisseria colonization, transmission, persistence, and horizontal gene transfer. The model can potentially be developed further for preclinical testing of vaccine candidates.


Nature Medicine | 2018

Prevention of tuberculosis in rhesus macaques by a cytomegalovirus-based vaccine

Scott G. Hansen; Guangwu Xu; Julia C. Ford; Emily Marshall; Daniel Malouli; Roxanne M. Gilbride; Colette M. Hughes; Abigail B. Ventura; Emily Ainslie; Kurt T Randall; Andrea N. Selseth; Parker Rundstrom; Lauren Herlache; Matthew S. Lewis; Haesun Park; Shannon L. Planer; John M. Turner; Miranda Fischer; Christina Armstrong; Robert C Zweig; Joseph Valvo; Jackie Braun; Smitha Shankar; Lenette L. Lu; Andrew W. Sylwester; Alfred W. Legasse; Martin Messerle; Michael A. Jarvis; Lynn M. Amon; Alan Aderem

Despite widespread use of the bacille Calmette–Guérin (BCG) vaccine, tuberculosis (TB) remains a leading cause of global mortality from a single infectious agent (Mycobacterium tuberculosis or Mtb). Here, over two independent Mtb challenge studies, we demonstrate that subcutaneous vaccination of rhesus macaques (RMs) with rhesus cytomegalovirus vectors encoding Mtb antigen inserts (hereafter referred to as RhCMV/TB)—which elicit and maintain highly effector-differentiated, circulating and tissue-resident Mtb-specific CD4+ and CD8+ memory T cell responses—can reduce the overall (pulmonary and extrapulmonary) extent of Mtb infection and disease by 68%, as compared to that in unvaccinated controls, after intrabronchial challenge with the Erdman strain of Mtb at ∼1 year after the first vaccination. Fourteen of 34 RhCMV/TB-vaccinated RMs (41%) across both studies showed no TB disease by computed tomography scans or at necropsy after challenge (as compared to 0 of 17 unvaccinated controls), and ten of these RMs were Mtb-culture-negative for all tissues, an exceptional long-term vaccine effect in the RM challenge model with the Erdman strain of Mtb. These results suggest that complete vaccine-mediated immune control of highly pathogenic Mtb is possible if immune effector responses can intercept Mtb infection at its earliest stages.

Collaboration


Dive into the Shannon L. Planer's collaboration.

Top Co-Authors

Avatar

Alfred W. Legasse

Oregon National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar

Michael K. Axthelm

Oregon National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Afam A. Okoye

Oregon National Primate Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge