Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shao H. Yang is active.

Publication


Featured researches published by Shao H. Yang.


Science | 2006

A Protein Farnesyltransferase Inhibitor Ameliorates Disease in a Mouse Model of Progeria

Loren G. Fong; David Frost; Margarita Meta; Xin Qiao; Shao H. Yang; Catherine Coffinier; Stephen G. Young

Progerias are rare genetic diseases characterized by premature aging. Several progeroid disorders are caused by mutations that lead to the accumulation of a lipid-modified (farnesylated) form of prelamin A, a protein that contributes to the structural scaffolding for the cell nucleus. In progeria, the accumulation of farnesyl–prelamin A disrupts this scaffolding, leading to misshapen nuclei. Previous studies have shown that farnesyltransferase inhibitors (FTIs) reverse this cellular abnormality. We tested the efficacy of an FTI (ABT-100) in Zmpste24-deficient mice, a mouse model of progeria. The FTI-treated mice exhibited improved body weight, grip strength, bone integrity, and percent survival at 20 weeks of age. These results suggest that FTIs may have beneficial effects in humans with progeria.


Journal of Clinical Investigation | 2006

A farnesyltransferase inhibitor improves disease phenotypes in mice with a Hutchinson-Gilford progeria syndrome mutation

Shao H. Yang; Margarita Meta; Xin Qiao; David J. Frost; Joy Bauch; Catherine Coffinier; Sharmila Majumdar; Martin O. Bergo; Stephen G. Young; Loren G. Fong

Hutchinson-Gilford progeria syndrome (HGPS) is caused by the production of a truncated prelamin A, called progerin, which is farnesylated at its carboxyl terminus. Progerin is targeted to the nuclear envelope and causes misshapen nuclei. Protein farnesyltransferase inhibitors (FTI) mislocalize progerin away from the nuclear envelope and reduce the frequency of misshapen nuclei. To determine whether an FTI would ameliorate disease phenotypes in vivo, we created gene-targeted mice with an HGPS mutation (LmnaHG/+) and then examined the effect of an FTI on disease phenotypes. LmnaHG/+ mice exhibited phenotypes similar to those in human HGPS patients, including retarded growth, reduced amounts of adipose tissue, micrognathia, osteoporosis, and osteolytic lesions in bone. Osteolytic lesions in the ribs led to spontaneous bone fractures. Treatment with an FTI increased adipose tissue mass, improved body weight curves, reduced the number of rib fractures, and improved bone mineralization and bone cortical thickness. These studies suggest that FTIs could be useful for treating humans with HGPS.


Journal of Clinical Investigation | 2006

Prelamin A and lamin A appear to be dispensable in the nuclear lamina

Loren G. Fong; Jennifer K. Ng; Jan Lammerding; Timothy A. Vickers; Margarita Meta; Nathan Coté; Bryant J. Gavino; Xin Qiao; Sandy Y. Chang; Stephanie R. Young; Shao H. Yang; Colin L. Stewart; Richard T. Lee; C. Frank Bennett; Martin O. Bergo; Stephen G. Young

Lamin A and lamin C, both products of Lmna, are key components of the nuclear lamina. In the mouse, a deficiency in both lamin A and lamin C leads to slow growth, muscle weakness, and death by 6 weeks of age. Fibroblasts deficient in lamins A and C contain misshapen and structurally weakened nuclei, and emerin is mislocalized away from the nuclear envelope. The physiologic rationale for the existence of the 2 different Lmna products lamin A and lamin C is unclear, although several reports have suggested that lamin A may have particularly important functions, for example in the targeting of emerin and lamin C to the nuclear envelope. Here we report the development of lamin C-only mice (Lmna(LCO/LCO)), which produce lamin C but no lamin A or prelamin A (the precursor to lamin A). Lmna(LCO/LCO) mice were entirely healthy, and Lmna(LCO/LCO) cells displayed normal emerin targeting and exhibited only very minimal alterations in nuclear shape and nuclear deformability. Thus, at least in the mouse, prelamin A and lamin A appear to be dispensable. Nevertheless, an accumulation of farnesyl-prelamin A (as occurs with a deficiency in the prelamin A processing enzyme Zmpste24) caused dramatically misshapen nuclei and progeria-like disease phenotypes. The apparent dispensability of prelamin A suggested that lamin A-related progeroid syndromes might be treated with impunity by reducing prelamin A synthesis. Remarkably, the presence of a single Lmna(LCO) allele eliminated the nuclear shape abnormalities and progeria-like disease phenotypes in Zmpste24-/- mice. Moreover, treating Zmpste24-/- cells with a prelamin A-specific antisense oligonucleotide reduced prelamin A levels and significantly reduced the frequency of misshapen nuclei. These studies suggest a new therapeutic strategy for treating progeria and other lamin A diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2004

Heterozygosity for Lmna deficiency eliminates the progeria-like phenotypes in Zmpste24-deficient mice

Loren G. Fong; Jennifer K. Ng; Margarita Meta; Nathan Coté; Shao H. Yang; Colin L. Stewart; Terry Sullivan; Andrew J. Burghardt; Sharmila Majumdar; Karen Reue; Martin O. Bergo; Stephen G. Young

Zmpste24 is a metalloproteinase required for the processing of prelamin A to lamin A, a structural component of the nuclear lamina. Zmpste24 deficiency results in the accumulation of prelamin A within cells, a complete loss of mature lamin A, and misshapen nuclear envelopes. Zmpste24-deficient (Zmpste24–/–) mice exhibit retarded growth, alopecia, micrognathia, dental abnormalities, osteolytic lesions in bones, and osteoporosis, which are phenotypes shared with Hutchinson–Gilford progeria syndrome, a human disease caused by the synthesis of a mutant prelamin A that cannot undergo processing to lamin A. Zmpste24–/– mice also develop muscle weakness. We hypothesized that prelamin A might be toxic and that its accumulation in Zmpste24–/– mice is responsible for all of the disease phenotypes. We further hypothesized that Zmpste24–/– mice with half-normal levels of prelamin A (Zmpste24–/– mice with one Lmna knockout allele) would be subjected to less toxicity and be protected from disease. Thus, we bred and analyzed Zmpste24–/–Lmna+/– mice. As expected, prelamin A levels in Zmpste24–/–Lmna+/– cells were significantly reduced. Zmpste24–/–Lmna+/– mice were entirely normal, lacking all disease phenotypes, and misshapen nuclei were less frequent in Zmpste24–/–Lmna+/– cells than in Zmpste24–/– cells. These data suggest that prelamin A is toxic and that reducing its levels by as little as 50% provides striking protection from disease.


Journal of Clinical Investigation | 2008

Progerin elicits disease phenotypes of progeria in mice whether or not it is farnesylated

Shao H. Yang; Douglas A. Andres; H. Peter Spielmann; Stephen G. Young; Loren G. Fong

Hutchinson-Gilford progeria syndrome (HGPS), a rare disease that results in what appears to be premature aging, is caused by the production of a mutant form of prelamin A known as progerin. Progerin retains a farnesyl lipid anchor at its carboxyl terminus, a modification that is thought to be important in disease pathogenesis. Inhibition of protein farnesylation improves the hallmark nuclear shape abnormalities in HGPS cells and ameliorates disease phenotypes in mice harboring a knockin HGPS mutation (LmnaHG/+). The amelioration of disease, however, is incomplete, leading us to hypothesize that nonfarnesylated progerin also might be capable of eliciting disease. To test this hypothesis, we created knockin mice expressing nonfarnesylated progerin (LmnanHG/+). LmnanHG/+ mice developed the same disease phenotypes observed in LmnaHG/+ mice, although the phenotypes were milder, and mouse embryonic fibroblasts (MEFs) derived from these mice contained fewer misshapen nuclei. The steady-state levels of progerin in LmnanHG/+ MEFs and tissues were lower, suggesting a possible explanation for the milder phenotypes. These data support the concept that inhibition of protein farnesylation in progeria could be therapeutically useful but also suggest that this approach may be limited, as progerin elicits disease phenotypes whether or not it is farnesylated.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Regulation of prelamin A but not lamin C by miR-9, a brain-specific microRNA

Hea-Jin Jung; Catherine Coffinier; Youngshik Choe; Anne P. Beigneux; Brandon S. J. Davies; Shao H. Yang; Richard H. Barnes; Janet Hong; Tao Sun; Samuel J. Pleasure; Stephen G. Young; Loren G. Fong

Lamins A and C, alternatively spliced products of the LMNA gene, are key components of the nuclear lamina. The two isoforms are found in similar amounts in most tissues, but we observed an unexpected pattern of expression in the brain. Western blot and immunohistochemistry studies showed that lamin C is abundant in the mouse brain, whereas lamin A and its precursor prelamin A are restricted to endothelial cells and meningeal cells and are absent in neurons and glia. Prelamin A transcript levels were low in the brain, but this finding could not be explained by alternative splicing. In lamin A-only knockin mice, where alternative splicing is absent and all the output of the gene is channeled into prelamin A transcripts, large amounts of lamin A were found in peripheral tissues, but there was very little lamin A in the brain. Also, in knockin mice expressing exclusively progerin (a toxic form of prelamin A found in Hutchinson–Gilford progeria syndrome), the levels of progerin in the brain were extremely low. Further studies showed that prelamin A expression, but not lamin C expression, is down-regulated by a brain-specific microRNA, miR-9. Expression of miR-9 in cultured cells reduced lamin A expression, and this effect was abolished when the miR-9–binding site in the prelamin A 3′ UTR was mutated. The down-regulation of prelamin A expression in the brain could explain why mouse models of Hutchinson–Gilford progeria syndrome are free of central nervous system pathology.


Journal of Biological Chemistry | 2006

Prelamin A farnesylation and progeroid syndromes

Stephen G. Young; Margarita Meta; Shao H. Yang; Loren G. Fong

Hutchinson-Gilford progeria syndrome (HGPS) is caused by a LMNA mutation that leads to the synthesis of a mutant prelamin A that is farnesylated but cannot be further processed to mature lamin A. A more severe progeroid disorder, restrictive dermopathy (RD), is caused by the loss of the prelamin A-processing enzyme, ZMPSTE24. The absence of ZMPSTE24 prevents the endoproteolytic processing of farnesyl-prelamin A to mature lamin A and leads to the accumulation of farnesyl-prelamin A. In both HGPS and RD, the farnesyl-prelamin A is targeted to the nuclear envelope, where it interferes with the integrity of the nuclear envelope and causes misshapen cell nuclei. Recent studies have shown that the frequency of misshapen nuclei can be reduced by treating cells with a farnesyltransferase inhibitor (FTI). Also, administering an FTI to mouse models of HGPS and RD ameliorates the phenotypes of progeria. These studies have prompted interest in testing the efficacy of FTIs in children with HGPS.


Annual Review of Genomics and Human Genetics | 2009

The Posttranslational Processing of Prelamin A and Disease

Brandon S. J. Davies; Loren G. Fong; Shao H. Yang; Catherine Coffinier; Stephen G. Young

Human geneticists have shown that some progeroid syndromes are caused by mutations that interfere with the conversion of farnesyl-prelamin A to mature lamin A. For example, Hutchinson-Gilford progeria syndrome is caused by LMNA mutations that lead to the accumulation of a farnesylated version of prelamin A. In this review, we discuss the posttranslational modifications of prelamin A and their relevance to the pathogenesis and treatment of progeroid syndromes.


Human Molecular Genetics | 2011

An absence of both lamin B1 and lamin B2 in keratinocytes has no effect on cell proliferation or the development of skin and hair

Shao H. Yang; Sandy Y. Chang; Liya Yin; Yiping Tu; Yan Hu; Yuko Yoshinaga; Pieter J. de Jong; Loren G. Fong; Stephen G. Young

Nuclear lamins are usually classified as A-type (lamins A and C) or B-type (lamins B1 and B2). A-type lamins have been implicated in multiple genetic diseases but are not required for cell growth or development. In contrast, B-type lamins have been considered essential in eukaryotic cells, with crucial roles in DNA replication and in the formation of the mitotic spindle. Knocking down the genes for B-type lamins (LMNB1, LMNB2) in HeLa cells has been reported to cause apoptosis. In the current study, we created conditional knockout alleles for mouse Lmnb1 and Lmnb2, with the goal of testing the hypothesis that B-type lamins are crucial for the growth and viability of mammalian cells in vivo. Using the keratin 14-Cre transgene, we bred mice lacking the expression of both Lmnb1 and Lmnb2 in skin keratinocytes (Lmnb1(Δ/Δ)Lmnb2(Δ/Δ)). Lmnb1 and Lmnb2 transcripts were absent in keratinocytes of Lmnb1(Δ/Δ)Lmnb2(Δ/Δ) mice, and lamin B1 and lamin B2 proteins were undetectable. But despite an absence of B-type lamins in keratinocytes, the skin and hair of Lmnb1(Δ/Δ)Lmnb2(Δ/Δ) mice developed normally and were free of histological abnormalities, even in 2-year-old mice. After an intraperitoneal injection of bromodeoxyuridine (BrdU), similar numbers of BrdU-positive keratinocytes were observed in the skin of wild-type and Lmnb1(Δ/Δ)Lmnb2(Δ/Δ) mice. Lmnb1(Δ/Δ)Lmnb2(Δ/Δ) keratinocytes did not exhibit aneuploidy, and their growth rate was normal in culture. These studies challenge the concept that B-type lamins are essential for proliferation and vitality of eukaryotic cells.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Targeting the protein prenyltransferases efficiently reduces tumor development in mice with K-RAS-induced lung cancer

Meng Liu; Anna-Karin M. Sjogren; Christin Karlsson; Mohamed X. Ibrahim; Karin M. E. Andersson; Frida J. Olofsson; Annika M. Wahlstrom; Martin Dalin; Huiming Yu; Zhenggang Chen; Shao H. Yang; Stephen G. Young; Martin O. Bergo

RAS and RHO proteins, which contribute to tumorigenesis and metastasis, undergo posttranslational modification with an isoprenyl lipid by protein farnesyltransferase (FTase) or protein geranylgeranyltransferase-I (GGTase-I). Inhibitors of FTase and GGTase-I were developed to block RAS-induced malignancies, but their utility has been difficult to evaluate because of off-target effects, drug resistance, and toxicity. Moreover, the impact of FTase deficiency and combined FTase/GGTase-I deficiency has not been evaluated with genetic approaches. We found that inactivation of FTase eliminated farnesylation of HDJ2 and H-RAS, prevented H-RAS targeting to the plasma membrane, and blocked proliferation of primary and K-RASG12D-expressing fibroblasts. FTase inactivation in mice with K-RAS-induced lung cancer reduced tumor growth and improved survival, similar to results obtained previously with inactivation of GGTase-I. Simultaneous inactivation of FTase and GGTase-I markedly reduced lung tumors and improved survival without apparent pulmonary toxicity. These data shed light on the biochemical and therapeutic importance of FTase and suggest that simultaneous inhibition of FTase and GGTase-I could be useful in cancer therapeutics.

Collaboration


Dive into the Shao H. Yang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Loren G. Fong

University of California

View shared research outputs
Top Co-Authors

Avatar

Hea-Jin Jung

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xin Qiao

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Margarita Meta

University of California

View shared research outputs
Top Co-Authors

Avatar

Sandy Y. Chang

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge