Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shaobo Qu is active.

Publication


Featured researches published by Shaobo Qu.


Journal of Materials Chemistry | 2016

Significantly enhanced recoverable energy storage density in potassium–sodium niobate-based lead free ceramics

Zetian Yang; Hongliang Du; Shaobo Qu; Yudong Hou; Hua Ma; Jiafu Wang; Jun Wang; Xiaoyong Wei; Zhuo Xu

Ceramic-based dielectric materials are regarded as the best candidates for advanced pulsed power capacitors because of their excellent mechanical and thermal properties. Nevertheless, lead-free bulk ceramics show relatively low recoverable energy storage density (Wrec < 2 J cm−3) owing to their low dielectric breakdown strength (DBS < 200 kV cm−1). In order to significantly increase Wrec, we proposed a strategy (compositions drive the grain size to submicrometer) to improve the DBS of lead-free ceramics. In this work, (1 − x)(K0.5Na0.5)NbO3–xSrTiO3 (KNN–ST) ceramics were chosen as a representative to verify the validity of this strategy. The (1 − x)KNN–xST ceramics (x = 0.15 and 0.20) with submicrometer grains (about 0.3 μm) were prepared using pressureless solid state sintering. A large Wrec (4.03 J cm−3) and DBS (400 kV cm−1 with a thickness of 0.2 mm) were achieved for 0.85KNN–0.15ST ceramics. The value of 4.03 J cm−3 is superior to all other Wrec in lead-free bulk ceramics and 2–3 times larger than that of other lead-free bulk ceramics. A large Wrec (3.67 J cm−3) and energy storage efficiency (72.1%) were simultaneously achieved for 0.80KNN–0.20ST ceramics. The results confirm that the (1 − x)KNN–xST ceramics (x = 0.15 and 0.20) are desirable materials for advanced pulsed power capacitors. The findings in this study could push the development of a series of KNN-based ceramics with enhanced DBS and Wrec in the future. On the other hand, this work could broaden the applications of KNN materials in a new field.


Journal of Materials Chemistry | 2017

Potassium–sodium niobate based lead-free ceramics: novel electrical energy storage materials

Tengqiang Shao; Hongliang Du; Hua Ma; Shaobo Qu; Jun Wang; Jiafu Wang; Xiaoyong Wei; Zhuo Xu

The development of lead-free bulk ceramics with high recoverable energy density (Wrec) is of decisive importance for meeting the requirements of advanced pulsed power capacitors toward miniaturization and integration. However, the Wrec (<2 J cm−3) of lead-free bulk ceramics has long been limited by their low dielectric breakdown strength (DBS < 200 kV cm−1) and small saturation polarization (Ps). In this work, a strategy (compositions control the grain size of lead-free ceramics to submicron scale to increase the DBS, and the hybridization between the Bi 6p and O 2p orbitals enhances the Ps) was proposed to improve the Wrec of lead-free ceramics. (K0.5Na0.5)NbO3–Bi(Me2/3Nb1/3)O3 solid solutions (where Me2+ = Mg and Zn) were designed for achieving large Ps, and high DBS and Wrec. As an example, (1 − x)(K0.5Na0.5)NbO3–xBi(Mg2/3Nb1/3)O3 (KNN–BMN) ceramics were prepared by using a conventional solid-state reaction process in this study. Large Ps (41 μC cm−2) and high DBS (300 kV cm−1) were obtained for 0.90KNN–0.10BMN ceramics, leading to large Wrec (4.08 J cm−3). The significantly enhanced Wrec is more than 2–3 times larger than that of other lead-free bulk ceramics. The findings in this study not only provide a design methodology for developing lead-free bulk ceramics with large Wrec but also could bring about the development of a series of KNN-based ceramics with significantly enhanced Wrec and DBS in the future. More importantly, this work opens a new research and application field (dielectric energy storage) for (K0.5Na0.5)NbO3-based ceramics.


Scientific Reports | 2017

Wideband, wide-angle coding phase gradient metasurfaces based on Pancharatnam-Berry phase

Qiqi Zheng; Yongfeng Li; Jieqiu Zhang; Hua Ma; Jiafu Wang; Yongqiang Pang; Yajuan Han; Sai Sui; Yang Shen; Hongya Chen; Shaobo Qu

A new concept of the coding phase gradient metasurface (CPGM) is proposed, which is constructed using the phase gradient metasurface as the coding elements. Different from the previous coding metasurface (CM), both the coding sequences and gradient phases in the coding elements are designed to manipulate the electromagnetic (EM) wave for the CPGMs, and thus the manipulation will be more flexible. As an example, wide-band, wide-angle CPGMs with zero and non-zero phase gradient based on Pancharatnam-Berry (PB) phase are achieved using the co-polarization reflection unit cells under circularly polarized (CP) wave incidence. Both theoretically calculated and numerically simulated scattering patterns of the designed CPGMs demonstrate the expected manipulations. Additionally, two kinds of random CPGMs with different phase gradients are designed for radar cross section (RCS) reduction, and the measured RCS reveals a good accordance with the simulation.


Scientific Reports | 2016

Spatial k -dispersion engineering of spoof surface plasmon polaritons for customized absorption

Yongqiang Pang; Jiafu Wang; Hua Ma; Mingde Feng; Yongfeng Li; Zhuo Xu; Song Xia; Shaobo Qu

Absorption of electromagnetic waves in a medium is generally manipulated by controlling the frequency dispersion of constitutive parameters. However, it is still challenging to gain the desired constitutive parameters for customized absorption over a broad frequency range. Here, by virtue of spoof surface plasmonic polaritons (SPPs), we demonstrate capabilities of the spatial k-dispersion engineering for producing the customized broadband absorption. Incident waves can be efficiently converted to the spoof SPPs by plasmonic arrays, and their propagation and/or absorption can be controlled by engineering the spatial dispersion of k-vector. Based on this feature, we show how such concept is employed to achieve broadband as well as frequency-selective broadband absorptions as examples. It is expected that the proposed concept can be extended to other manipulations of propagating electromagnetic waves over a broad frequency range.


Scientific Reports | 2016

Reconfigurable all-dielectric metamaterial frequency selective surface based on high-permittivity ceramics.

Liyang Li; Jun Wang; Jiafu Wang; Hua Ma; Hongliang Du; Jieqiu Zhang; Shaobo Qu; Zhuo Xu

Based on effective medium theory and dielectric resonator theory, we propose the design of reconfigurable all-dielectric metamaterial frequency selective surfaces (FSSs) using high-permittivity ceramics. The FSS is composed of ceramic resonators with different band stop responses under front and side incidences. By mechanically tuning the orientation of the ceramic resonators, reconfigurable electromagnetic (EM) responses between two adjacent stopbands can be achieved. The two broad stopbands originate from the first two resonant modes of the ceramic resonators. As an example, a reconfigurable FSS composed of cross-shaped ceramic resonators is demonstrated. Both numerical and experimental results show that the FSS can switch between two consecutive stopbands in 3.55–4.60 GHz and 4.54–4.94 GHz. The design method can be readily extended to the design of FSSs in other frequencies for high-power applications.


Scientific Reports | 2016

Microwave birefringent metamaterials for polarization conversion based on spoof surface plasmon polariton modes.

Yongfeng Li; Jieqiu Zhang; Hua Ma; Jiafu Wang; Yongqiang Pang; Dayi Feng; Zhuo Xu; Shaobo Qu

We propose the design of wideband birefringent metamaterials based on spoof surface plasmon polaritons (SSPPs). Spatial k-dispersion design of SSPP modes in metamaterials is adopted to achieve high-efficiency transmission of electromagnetic waves through the metamaterial layer. By anisotropic design, the transmission phase accumulation in metamaterials can be independently modulated for x- and y-polarized components of incident waves. Since the dispersion curve of SSPPs is nonlinear, frequency-dependent phase differences can be obtained between the two orthogonal components of transmitted waves. As an example, we demonstrate a microwave birefringent metamaterials composed of fishbone structures. The full-polarization-state conversions on the zero-longitude line of Poincaré sphere can be fulfilled twice in 6–20 GHz for both linearly polarized (LP) and circularly polarized (CP) waves incidence. Besides, at a given frequency, the full-polarization-state conversion can be achieved by changing the polarization angle of the incident LP waves. Both the simulation and experiment results verify the high-efficiency polarization conversion functions of the birefringent metamaterial, including circular-to-circular, circular-to-linear(linear-to-circular), linear-to-linear polarization conversions.


Scientific Reports | 2018

Electromagnetic wave absorption and compressive behavior of a three-dimensional metamaterial absorber based on 3D printed honeycomb

Wei Jiang; Leilei Yan; Hua Ma; Ya Fan; Jiafu Wang; Mingde Feng; Shaobo Qu

Lightweight structures with multi-functions such as electromagnetic wave absorption and excellent mechanical properties are required in spacecraft. A three-dimensional metamaterial absorber consisting of honeycomb and resistive films was proposed and fabricated through 3D printing and silk-screen printing technology. According to simulation and experiment results, the present three-dimensional metamaterial absorber can realize an absorptivity of more than 90% in a wide band of 3.53–24.00 GHz, and improve absorbing efficiency for transverse magnetic (TM) waves of oblique incidence angle from 0° to 70°. The compression test results reveal that compressive strength of the 3D printed honeycomb can reach 10.7 MPa with density of only 254.91 kg/m3, and the energy absorption per volume Wv and per unit mass Wm are 4.37 × 103 KJ/m3 and 17.14 KJ/Kg, respectively. The peak compressive strength and energy absorption per mass are at least 2.2 and 3 times comparing to metallic lattice cores with the same density. Outstanding electromagnetic wave absorption and mechanical performance make the present three-dimensional metamaterial absorber more competitive in engineering applications.


Scientific Reports | 2017

High-efficiency tri-band quasi-continuous phase gradient metamaterials based on spoof surface plasmon polaritons

Yongfeng Li; Hua Ma; Jiafu Wang; Yongqiang Pang; Qiqi Zheng; Hongya Chen; Yajuan Han; Jieqiu Zhang; Shaobo Qu

A high-efficiency tri-band quasi-continuous phase gradient metamaterial is designed and demonstrated based on spoof surface plasmon polaritons (SSPPs). High-efficiency polarizaiton conversion transmission is firstly achieved via tailoring phase differece between the transmisive SSPP and the space wave in orthogonal directions. As an example, a tri-band circular-to-circular (CTC) polarization conversion metamateiral (PCM) was designed by a nonlinearly dispersive phase difference. Using such PCM unit cell, a tri-band quasi-continuous phase gradient metamaterial (PGM) was then realized by virtue of the Pancharatnam-Berry phase. The distribution of the cross-polarization transmission phase along the x-direction is continuous except for two infinitely small intervals near the phases 0° and 360°, and thus the phase gradient has definition at any point along the x-direction. The simulated normalized polarization conversion transmission spectrums together with the electric field distributions for circularly polarized wave and linearly polarized wave demonstrated the high-efficiency anomalous refraction of the quasi-continuous PGM. The experimental verification for the linearly polarized incidence was also provided.


progress in electromagnetic research symposium | 2016

A novel miniaturized dual-stop-band FSS for Wi-Fi application

Mingbao Yan; Shaobo Qu; Jiafu Wang; Mingde Feng; Wenjie Wang; Cuilian Xu; Zhiqiang Li; Lin Zheng; Hang Zhou

In this paper, we propose a new miniaturized dual band frequency selective surface (FSS) for Wi-Fi applications. The proposed FSS possesses 0.42 GHz and 0.30 GHz bandwidths with insertion loss less than -15 dB around the two central operating frequencies 2.4 GHz and 4.6 GHz, respectively. The FSS exhibits excellent miniaturization with 0.057λ<sub>1</sub> × 0.057λ<sub>1</sub> or 0.11λ<sub>2</sub>×0.11λ<sub>2</sub> unit cells, where λ<sub>1</sub> and λ<sub>2</sub> represent the free-space wavelengths of two operating bands. Furthermore, the unit cell structure provides a stable performance for both TE and TM polarizations under incident angles up to ±60°. A prototype of the proposed FSS is fabricated and measured. The measured results agree well with the simulated results.


Scientific Reports | 2018

Thermally Tunable Ultra-wideband Metamaterial Absorbers based on Three-dimensional Water-substrate construction

Yang Shen; Jieqiu Zhang; Yongqiang Pang; Lin Zheng; Jiafu Wang; Hua Ma; Shaobo Qu

Distilled water has frequency dispersive characteristic and high value of imaginary part in permittivity, which can be seen as a good candidate of broadband metamaterial absorbers(MAs) in microwave. Here, an interesting idea based on the combination of water-substrate and metallic metamaterial in the three-dimensional construction is proposed, which can achieve outstanding broadband absorption. As a proof, the distilled water is filled into the dielectric reservoir as ultra-thin water-substrate, and then the water-substrates are arranged on the metal backplane periodically as three-dimensional water-substrate array(TWA). Simulation shows that the TWA achieves broadband absorption with the efficiency more than 90% from 8.3 to 21.0 GHz. Then, the trigonal metallic fishbone structure is introduced here between the water-substrate and the dielectric reservoir periodically as three-dimensional water-substrate metamaterial absorber(TWMA). The proposed TWMA could achieve ultra-broadband absorption from 2.6 to 16.8 GHz, which has increase by 64.8% in relative absorption bandwidth. Meanwhile, due to the participation of distilled water, the thermally tunable property also deserves to be discussed here. In view of the outstanding performance, it is worth to expect a wide range of applications to emerge inspired from the proposed construction.

Collaboration


Dive into the Shaobo Qu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhuo Xu

Ministry of Education

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge