Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shaoqing Lei is active.

Publication


Featured researches published by Shaoqing Lei.


Diabetes | 2013

Hyperglycemia-Induced Protein Kinase C β2 Activation Induces Diastolic Cardiac Dysfunction in Diabetic Rats by Impairing Caveolin-3 Expression and Akt/eNOS Signaling

Shaoqing Lei; Haobo Li; Jinjin Xu; Yanan Liu; Xia Gao; Junwen Wang; Kwok Fu Jacobus Ng; Wayne Bond Lau; Xin-Liang Ma; Brian Rodrigues; Michael G. Irwin; Zhengyuan Xia

Protein kinase C (PKC)β2 is preferably overexpressed in the diabetic myocardium, which induces cardiomyocyte hypertrophy and contributes to diabetic cardiomyopathy, but the underlying mechanisms are incompletely understood. Caveolae are critical in signal transduction of PKC isoforms in cardiomyocytes. Caveolin (Cav)-3, the cardiomyocyte-specific caveolar structural protein isoform, is decreased in the diabetic heart. The current study determined whether PKCβ2 activation affects caveolae and Cav-3 expression. Immunoprecipitation and immunofluorescence analysis revealed that high glucose (HG) increased the association and colocalization of PKCβ2 and Cav-3 in isolated cardiomyocytes. Disruption of caveolae by methyl-β-cyclodextrin or Cav-3 small interfering (si)RNA transfection prevented HG-induced PKCβ2 phosphorylation. Inhibition of PKCβ2 activation by compound CGP53353 or knockdown of PKCβ2 expression via siRNA attenuated the reductions of Cav-3 expression and Akt/endothelial nitric oxide synthase (eNOS) phosphorylation in cardiomyocytes exposed to HG. LY333531 treatment (for a duration of 4 weeks) prevented excessive PKCβ2 activation and attenuated cardiac diastolic dysfunction in rats with streptozotocin-induced diabetes. LY333531 suppressed the decreased expression of myocardial NO, Cav-3, phosphorylated (p)-Akt, and p-eNOS and also mitigated the augmentation of O2−, nitrotyrosine, Cav-1, and iNOS expression. In conclusion, hyperglycemia-induced PKCβ2 activation requires caveolae and is associated with reduced Cav-3 expression in the diabetic heart. Prevention of excessive PKCβ2 activation attenuated cardiac diastolic dysfunction by restoring Cav-3 expression and subsequently rescuing Akt/eNOS/NO signaling.


Free Radical Biology and Medicine | 2013

N-Acetylcysteine and allopurinol up-regulated the Jak/STAT3 and PI3K/Akt pathways via adiponectin and attenuated myocardial postischemic injury in diabetes

Tingting Wang; Xiaowen Mao; Haobo Li; Shigang Qiao; Aimin Xu; Junwen Wang; Shaoqing Lei; Zipeng Liu; Kwok Fu Jacobus Ng; G. T. C. Wong; Paul M. Vanhoutte; Michael G. Irwin; Zhengyuan Xia

N-Acetylcysteine (NAC) and allopurinol (ALP) synergistically reduce myocardial ischemia reperfusion (MI/R) injury in diabetes. However, the mechanism is unclear. We postulated that NAC and ALP attenuated diabetic MI/R injury by up-regulating phosphatidylinositol 3-kinase/Akt (PI3K/Akt) and Janus kinase 2/signal transducer and activator of transcription-3 (JAK2/STAT3) pathways subsequent to adiponectin (APN) activation. Control (C) or streptozotocin-induced diabetic rats (D) were untreated or treated with NAC and ALP followed by MI/R. D rats displayed larger infarct size accompanied by decreased phosphorylation of Akt, STAT3 and decreased cardiac nitric oxide (NO) and APN levels. NAC and ALP decreased MI/R injury in D rats, enhanced phosphorylation of Akt and STAT3, and increased NO and APN. High glucose and hypoxia/reoxygenation exposure induced cell death and Akt and STAT3 inactivation in cultured cardiomyocytes, which were prevented by NAC and ALP. The PI3K inhibitor wortmannin and Jak2 inhibitor AG490 abolished the protection of NAC and ALP. Similarly, APN restored posthypoxic Akt and STAT3 activation and decreased cell death in cardiomyocytes. Gene silencing with AdipoR2 siRNA or STAT3 siRNA but not AdipoR1 siRNA abolished the protection of NAC and ALP. In conclusion, NAC and ALP prevented diabetic MI/R injury through PI3K/Akt and Jak2/STAT3 and cardiac APN may serve as a mediator via AdipoR2 in this process.


PLOS ONE | 2011

N-Acetylcysteine and Allopurinol Synergistically Enhance Cardiac Adiponectin Content and Reduce Myocardial Reperfusion Injury in Diabetic Rats

Tingting Wang; Shigang Qiao; Shaoqing Lei; Yanan Liu; Kwok Fu Jacobus Ng; Aimin Xu; Karen S.L. Lam; Michael G. Irwin; Zhengyuan Xia

Background Hyperglycemia-induced oxidative stress plays a central role in the development of diabetic myocardial complications. Adiponectin (APN), an adipokine with anti-diabetic and anti-ischemic effects, is decreased in diabetes. It is unknown whether or not antioxidant treatment with N-acetylcysteine (NAC) and/or allopurinol (ALP) can attenuate APN deficiency and myocardial ischemia reperfusion (MI/R) injury in the early stage of diabetes. Methodology/Principal Findings Control or streptozotocin (STZ)-induced diabetic rats were either untreated (C, D) or treated with NAC (1.5 g/kg/day) or ALP (100 mg/kg/day) or their combination for four weeks starting one week after STZ injection. Plasma and cardiac biochemical parameters were measured after the completion of treatment, and the rats were subjected to MI/R by occluding the left anterior descending artery for 30 min followed by 2 h reperfusion. Plasma and cardiac APN levels were decreased in diabetic rats accompanied by decreased cardiac APN receptor 2 (AdipoR2), reduced phosphorylation of Akt, signal transducer and activator of transcription 3 (STAT3) and endothelial nitric oxide synthase (eNOS) but increased IL-6 and TNF-α (all P<0.05 vs. C). NAC but not ALP increased cardiac APN concentrations and AdipoR2 expression in diabetic rats. ALP enhanced the effects of NAC in restoring cardiac AdipoR2 and phosphorylation of Akt, STAT3 and eNOS in diabetic rats. Further, NAC and ALP, respectively, decreased postischemic myocardial infarct size and creatinine kinase-MB (CK-MB) release in diabetic rats, while their combination conferred synergistic protective effects. In addition, exposure of cultured rat cardiomyocytes to high glucose resulted in significant reduction of cardiomyocyte APN concentration and AdipoR2 protein expression. APN supplementation restored high glucose induced AdipoR2 reduction in cardiomyocytes. Conclusions/Significance NAC and ALP synergistically restore myocardial APN and AdipoR2 mediated eNOS activation. This may represent the mechanism through which NAC and ALP combination greatly reduces MI/R injury in early diabetic rats.


Yonsei Medical Journal | 2012

Effects of N-Acetylcysteine on Nicotinamide Dinucleotide Phosphate Oxidase Activation and Antioxidant Status in Heart, Lung, Liver and Kidney in Streptozotocin-Induced Diabetic Rats

Shaoqing Lei; Yanan Liu; Hui-min Liu; Hong Yu; Hui Wang; Zhengyuan Xia

Purpose Hyperglycemia increases reactive oxygen species (ROS) and the resulting oxidative stress plays a key role in the pathogenesis of diabetic complications. Nicotinamide dinucleotide phosphate (NADPH) oxidase is one of the major sources of ROS production in diabetes. We, therefore, examined the possibility that NADPH oxidase activation is increased in various tissues, and that the antioxidant N-acetylcysteine (NAC) may have tissue specific effects on NADPH oxidase and tissue antioxidant status in diabetes. Materials and Methods Control (C) and streptozotocin-induced diabetic (D) rats were treated either with NAC (1.5 g/kg/day) orally or placebo for 4 weeks. The plasma, heart, lung, liver, kidney were harvested immediately and stored for biochemical or immunoblot analysis. Results levels of free 15-F2t-isoprostane were increased in plasma, heart, lung, liver and kidney tissues in diabetic rats, accompanied with significantly increased membrane translocation of the NADPH oxidase subunit p67phox in all tissues and increased expression of the membrane-bound subunit p22phox in heart, lung and kidney. The tissue antioxidant activity in lung, liver and kidney was decreased in diabetic rats, while it was increased in heart tissue. NAC reduced the expression of p22phox and p67phox, suppressed p67phox membrane translocation, and reduced free 15-F2t-isoprostane levels in all tissues. NAC increased antioxidant activity in liver and lung, but did not significantly affect antioxidant activity in heart and kidney. Conclusion The current study shows that NAC inhibits NADPH oxidase activation in diabetes and attenuates tissue oxidative damage in all organs, even though its effects on antioxidant activity are tissue specific.


BioMed Research International | 2011

Shen-Fu Injection Preconditioning Inhibits Myocardial Ischemia-Reperfusion Injury in Diabetic Rats: Activation of eNOS via the PI3K/Akt Pathway

Yang Wu; Zhong-yuan Xia; Qing-Tao Meng; Jie Zhu; Shaoqing Lei; Jinjin Xu; Juan Dou

The aim of this paper is to investigate whether Shen-fu injection (SFI), a traditional Chinese medicine, could attenuate myocardial ischemia-reperfusion (MI/R) injury in diabetes. Streptozotocin-induced diabetic rats were randomly assigned to the Sham, I/R, SFI preconditioning, and SFI plus wortmannin (a phosphatidylinositol 3-kinase inhibitor) groups. After the treatment, hearts were subjected to 30 min of coronary artery occlusion and 2 h reperfusion except the Sham group. Myocardial infarct size and cardiomyocytes apoptosis were increased significantly in MI/R group as compared with the Sham group. SFI preconditioning significantly decreased infarct size, apoptosis, caspase-3 protein expression, MDA level in myocardial tissues, and plasma level of CK and LDH but increased p-Akt, p-eNOS, bcl-2 protein expression, and SOD activity compared to I/R group. Moreover, SFI-induced cardioprotection was abolished by wortmannin. We conclude that SFI preconditioning protects diabetic hearts from I/R injury via PI3K/Akt-dependent pathway.


Clinical Science | 2015

Inhibition of PKCβ2 overexpression ameliorates myocardial ischaemia/reperfusion injury in diabetic rats via restoring caveolin-3/Akt signaling.

Yanan Liu; Jiqin Jin; Shigang Qiao; Shaoqing Lei; Songyan Liao; Zhi Dong Ge; Haobo Li; Gordon T.C. Wong; Michael G. Irwin; Zhengyuan Xia

Activation of PKCβ (protein kinase Cβ) plays a critical role in myocardial I/R (ischaemia/reperfusion) injury in non-diabetic rodents. In the myocardium of diabetes, PKCβ2 overexpression is associated with increased vulnerability to post-ischaemic I/R injury with concomitantly impaired cardiomyocyte Cav (caveolin)-3 and Akt signalling compared with non-diabetic rats. We hypothesized that myocardial PKCβ overexpression in diabetes exacerbates myocardial I/R injury through impairing Cav-3/Akt signalling. Streptozotocin-induced diabetic rats were treated with the selective PKCβ inhibitor ruboxistaurin (RBX, 1 mg/kg per day) for 4 weeks, starting from 1 week after diabetes induction, before inducing myocardial I/R achieved by occluding the left descending coronary artery followed by reperfusion. Cardiac function was measured using a pressure-volume conductance system. In an in vitro study, cardiac H9C2 cells were exposed to high glucose (30 mmol/l) and subjected to hypoxia followed by reoxygenation (H/R) in the presence or absence of the selective PKCβ2 inhibitor CGP53353 (1 μmol/l), siRNAs of PKCβ2 or Cav-3 or Akt. Cell apoptosis and mitochondrial membrane potential were assessed by TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP nick-end labelling) and JC-1 staining respectively. RBX significantly decreased post-ischaemic myocardial infarct size (35±5% compared with 49±3% in control, P<0.05) and attenuated cardiac dysfunction, and prevented the reduction in cardiac Cav-3 and enhanced phosphorylated/activated Akt (p-Akt) in diabetic rats (P<0.05). H/R increased cardiomyocyte injury under high glucose conditions as was evident by increased TUNEL-positive and increased JC-1 monomeric cells (P<0.05 compared with control), accompanied with increased PKCβ2 phosphorylation/activation and decreased Cav-3 expression. Either CGP53353 or PKCβ2 siRNA significantly attenuated all of these changes and enhanced p-Akt. Cav-3 gene knockdown significantly reduced p-Akt and increased post-hypoxic cellular and mitochondrial injury despite a concomitant reduction in PKCβ2 phosphorylation. PKCβ2 inhibition with RBX protects diabetic hearts from myocardial I/R injury through Cav-3-dependent activation of Akt.


Critical Care Medicine | 2014

Propofol Ameliorates Hyperglycemia-Induced Cardiac Hypertrophy and Dysfunction via Heme Oxygenase-1/Signal Transducer and Activator of Transcription 3 Signaling Pathway in Rats

Junmei Xu; Haobo Li; Michael G. Irwin; Zhengyuan Xia; Xiaowen Mao; Shaoqing Lei; G. T. C. Wong; Hung; Chi Wai Cheung; Fang X; Alexander S. Clanachan; Zhong-yuan Xia

Objectives:Heme oxygenase-1 is inducible in cardiomyocytes in response to stimuli such as oxidative stress and plays critical roles in combating cardiac hypertrophy and injury. Signal transducer and activator of transcription 3 plays a pivotal role in heme oxygenase-1-mediated protection against liver and lung injuries under oxidative stress. We hypothesized that propofol, an anesthetic with antioxidant capacity, may attenuate hyperglycemia-induced oxidative stress in cardiomyocytes via enhancing heme oxygenase-1 activation and ameliorate hyperglycemia-induced cardiac hypertrophy and apoptosis via heme oxygenase-1/signal transducer and activator of transcription 3 signaling and improve cardiac function in diabetes. Design:Treatment study. Setting:Research laboratory.Subjects: Sprague-Dawley rats. Interventions:In vivo and in vitro treatments. Measurements and Main Results:At 8 weeks of streptozotocin-induced type 1 diabetes in rats, myocardial 15-F2t-isoprostane was significantly increased, accompanied by cardiomyocyte hypertrophy and apoptosis and impaired left ventricular function that was coincident with reduced heme oxygenase-1 activity and signal transducer and activator of transcription 3 activation despite an increase in heme oxygenase-1 protein expression as compared to control. Propofol infusion (900 &mgr;g/kg/min) for 45 minutes significantly improved cardiac function with concomitantly enhanced heme oxygenase-1 activity and signal transducer and activator of transcription activation. Similar to the changes seen in diabetic rat hearts, high glucose (25 mmol/L) exposure for 48 hours led to cardiomyocyte hypertrophy and apoptosis, both in primary cultured neonatal rat cardiomyocytes and in H9c2 cells compared to normal glucose (5.5 mmol/L). Hypertrophy was accompanied by increased reactive oxygen species and malondialdehyde production and caspase-3 activity. Propofol, similar to the heme oxygenase-1 inducer cobalt protoporphyrin, significantly increased cardiomyocyte heme oxygenase-1 and p-signal transducer and activator of transcription protein expression and heme oxygenase-1 activity and attenuated high-glucose-mediated cardiomyocyte hypertrophy and apoptosis and reduced reactive oxygen species and malondialdehyde production (p < 0.05). These protective effects of propofol were abolished by heme oxygenase-1 inhibition with zinc protoporphyrin and by heme oxygenase-1 or signal transducer and activator of transcription 3 gene knockdown. Conclusions:Heme oxygenase-1/signal transducer and activator of transcription 3 signaling plays a critical role in propofol-mediated amelioration of hyperglycemia-induced cardiomyocyte hypertrophy and apoptosis, whereby propofol improves cardiac function in diabetic rats.


Oxidative Medicine and Cellular Longevity | 2013

Hyperglycemia-Induced Inhibition of DJ-1 Expression Compromised the Effectiveness of Ischemic Postconditioning Cardioprotection in Rats

Min Liu; Bin Zhou; Zhong-yuan Xia; Bo Zhao; Shaoqing Lei; Qing-Jun Yang; Rui Xue; Yan Leng; Jinjin Xu; Zhengyuan Xia

Ischemia postconditioning (IpostC) is an effective way to alleviate ischemia and reperfusion injury; however, the protective effects seem to be impaired in candidates with diabetes mellitus. To gain deep insight into this phenomenon, we explored the role of DJ-1, a novel oncogene, that may exhibit powerful antioxidant capacity in postconditioning cardioprotection in a rat model of myocardial ischemia reperfusion injury. Compared with normal group, cardiac DJ-1 was downregulated in diabetes. Larger postischemic infarct size as well as exaggeration of oxidative stress was observed, while IpostC reversed the above changes in normal but not in diabetic rats. DJ-1 was increased after ischemia and postconditioning contributed to a further elevation; however, no alteration of DJ-1 was documented in all subgroups of diabetic rats. Alteration of the cardioprotective PI3K/Akt signaling proteins may be responsible for the ineffectiveness of postconditioning in diabetes. There is a positive correlation relationship between p-Akt and DJ-1 but a negative correlation between infarct size and DJ-1, which may partially explain the interaction of DJ-1 and IpostC cardioprotection. Our result indicates a beneficial role of DJ-1 in myocardial ischemia reperfusion. Downregulation of cardiac DJ-1 may be responsible for the compromised diabetic heart responsiveness to IpostC cardioprotection.


Cell Biology International | 2017

Long non-coding RNA MALAT1 functions as a mediator in cardioprotective effects of fentanyl in myocardial ischemia-reperfusion injury.

Zhi-hui Zhao; Wei Hao; Qing-Tao Meng; Xiao-bing Du; Shaoqing Lei; Zhong-yuan Xia

Long non‐coding (lncRNA) MALAT1 can be increased by hypoxia or ischemic limbs. Also, downregulation of MALAT1 contributes to reduction of cardiomyocyte apoptosis. However, the functional involvement of MALAT1 in myocardial ischemia‐reperfusion (I/R) injury has not been defined. This study investigated the functional involvement of lncRNA‐MALAT1 in cardioprotective effects of fentanyl. HL‐1, a cardiac muscle cell line from the AT‐1 mouse atrial cardiomyocyte tumor lineage was pre‐treated with fentanyl and generated cell model of hypoxia‐reoxygenation (H/R). Relative expression of MALAT1, miR‐145, and Bnip3 mRNA in cells was determined by quantitative real‐time PCR. Cardiomyocyte H/R injury was indicated by lactate dehydrogenase (LDH) release and cell apoptosis. The results showed that fentanyl abrogates expression of responsive gene for H/R and induces downregulation of MALAT1 and Bnip3 and upregulation of miR‐145. We found that miR‐145/Bnip3 pathway was negatively regulated by MALAT1 in H/R‐HL‐1 cell with or without fentanyl treatment. Moreover, both MALAT1 overexpression and miR‐145 knockdown reverse cardioprotective effects of fentanyl, as indicated by increase in LDH release and cell apoptosis. The reversal effect of MALAT1 for fentanyl is confirmed in cardiac ischemia/reperfusion (I/R) mice. In summary, lncRNA‐MALAT1 is sensitive to H/R injury and abrogates cardioprotective effects of Fentanyl by negatively regulating miR‐145/Bnip3 pathway.


Diabetes-metabolism Research and Reviews | 2012

Allopurinol attenuates left ventricular dysfunction in rats with early stages of streptozotocin-induced diabetes

Xia Gao; Yuan Xu; Bo Xu; Yanan Liu; Jun Cai; Hui-min Liu; Shaoqing Lei; Yin-qin Zhong; Michael G. Irwin; Zhengyuan Xia

Xanthine oxidase‐derived superoxide production and oxidative stress contribute to the development of diabetic complications including diabetic cardiomyopathy. We hypothesized that xanthine oxidase‐inhibitor allopurinol (ALP) may decrease hyperglycemia‐induced oxidative stress, ameliorate cardiomyocyte hypertrophy and fibrosis, and attenuate the development of left ventricle (LV) diastolic dysfunction in rats with streptozotocin (STZ)‐induced diabetes.

Collaboration


Dive into the Shaoqing Lei's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yanan Liu

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Xiaowen Mao

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Tingting Wang

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hui-min Liu

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge