Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shaoyang Lin is active.

Publication


Featured researches published by Shaoyang Lin.


Science | 2006

An SNP Caused Loss of Seed Shattering During Rice Domestication

Saeko Konishi; Takeshi Izawa; Shaoyang Lin; Kaworu Ebana; Yoshimichi Fukuta; Takuji Sasaki; Masahiro Yano

Loss of seed shattering was a key event in the domestication of major cereals. We revealed that the qSH1 gene, a major quantitative trait locus of seed shattering in rice, encodes a BEL1-type homeobox gene and demonstrated that a single-nucleotide polymorphism (SNP) in the 5′ regulatory region of the qSH1 gene caused loss of seed shattering owing to the absence of abscission layer formation. Haplotype analysis and association analysis in various rice collections revealed that the SNP was highly associated with shattering among japonica subspecies of rice, implying that it was a target of artificial selection during rice domestication.


Theoretical and Applied Genetics | 1998

Mapping quantitative trait loci controlling seed dormancy and heading date in rice, Oryza sativa L., using backcross inbred lines

Shaoyang Lin; Takuji Sasaki; Masahiro Yano

Abstract To detect quantitative trait loci (QTLs) controlling seed dormancy, 98 BC1F5 lines (backcross inbred lines) derived from a backcross of Nipponbare (japonica)/Kasalath (indica)//Nipponbare were analyzed genetically. We used 245 RFLP markers to construct a framework linkage map. Five putative QTLs affecting seed dormancy were detected on chromosomes 3, 5, 7 (two regions) and 8, respectively. Phenotypic variations explained by each QTL ranged from 6.7% to 22.5% and the five putative QTLs explained about 48% of the total phenotypic variation in the BC1F5 lines. Except for those of the QTLs on chromosome 8, the Nipponbare alleles increased the germination rate. Five putative QTLs controlling heading date were detected on chromosomes 2, 3, 4, 6 and 7, respectively. The phenotypic variation explained by each QTL for heading date ranged from 5.7% to 23.4% and the five putative QTLs explained about 52% of the total phenotypic variation. The Nipponbare alleles increased the number of days to heading, except for those of two QTLs on chromosomes 2 and 3. The map location of a putative QTL for heading date coincided with that of a major QTL for seed dormancy on chromosome 3, although two major heading-date QTLs did not coincide with any seed dormancy QTLs detected in this study.


Theoretical and Applied Genetics | 1998

Fine mapping of quantitative trait loci Hd-1, Hd-2 and Hd-3, controlling heading date of rice, as single Mendelian factors

Toshio Yamamoto; Yoshihide Kuboki; Shaoyang Lin; Takuji Sasaki; Masahiro Yano

Abstract Fine mapping was carried out on three putative QTLs (tentatively designated as Hd-1 to Hd-3) of five such QTLs controlling heading date in rice that had been earlier identified using an F2 population derived from a cross between a japonica variety, ‘Nipponbare’, and an indica variety, ‘Kasalath’, using progeny backcrossed with ‘Nipponbare’ as the recurrent parent. One BC3F2 and two BC3F1 plants, in which the target QTL regions were heterozygous and most other chromosomal regions were homozygous for the ‘Nipponbare’ allele, were selected as the experimental material. Self-pollinated progeny (BC3F2 and BC3F3) of the BC3F1 or BC3F2 showed continuous variation in days to heading. By means of progeny testing based on BC3F3 or BC3F4 lines, we determined the genotypes of each BC3F2 or BC3F3 individual at target QTLs. Their segregation patterns fitted Mendelian inheritance ratios. When the results obtained by RFLP analysis and progeny tests were combined, Hd-1, Hd-2 and Hd-3 were mapped precisely on chromosomes 6, 7 and 6, respectively, of a rice RFLP linkage map. The results demonstrated that QTLs can be treated as Mendelian factors. Moreover, these precise locations were in good agreement with the regions estimated by QTL analysis of the initial F2 population, demonstrating the high reliability of QTL mapping using a high-density linkage map.


Theoretical and Applied Genetics | 2001

Toward the mapping of physiological and agronomic characters on a rice function map: QTL analysis and comparison between QTLs and expressed sequence tags

Ken Ishimaru; Masahiro Yano; N. Aoki; K. Ono; T. Hirose; Shaoyang Lin; Lisa Monna; Takuji Sasaki; R. Ohsugi

Abstract We have constructed a rice function map by collating the results on quantitative trait loci (QTLs) for 23 important physiological and agronomic characters (including 13 newly measured traits) obtained using backcross inbred lines of japonica Nipponbare×indica Kasalath. Using these materials, The Rice Genome project (RGP) has developed a high-density genetic map. QTLs controlling yield did not overlap with those controlling the morphological and physiological traits supposed to relate to yield, such as photosynthetic ability. This result suggests that these traits do not influence yield, at least in this genetic background and environment. QTLs controlling yield also did not overlap with the structural genes controlling carbon metabolism (rbcS, cytosolic or plastidic fructose-1,6-bisphosphate, R-enzyme, and sucrose synthase).The combination of a function map and results from the RGP can be advantageous. The utility of this map is discussed.


Molecular Genetics and Genomics | 2010

Gain of deleterious function causes an autoimmune response and Bateson–Dobzhansky–Muller incompatibility in rice

Eiji Yamamoto; Tomonori Takashi; Yoichi Morinaka; Shaoyang Lin; Jianzhong Wu; Takashi Matsumoto; Hidemi Kitano; Makoto Matsuoka; Motoyuki Ashikari

Reproductive isolation plays an important role in speciation as it restricts gene flow and accelerates genetic divergence between formerly interbreeding population. In rice, hybrid breakdown is a common reproductive isolation observed in both intra and inter-specific crosses. It is a type of post-zygotic reproductive isolation in which sterility and weakness are manifested in the F2 and later generations. In this study, the physiological and molecular basis of hybrid breakdown caused by two recessive genes, hbd2 and hbd3, in a cross between japonica variety, Koshihikari, and indica variety, Habataki, were investigated. Fine mapping of hbd2 resulted in the identification of the causal gene as casein kinase I (CKI1). Further analysis revealed that hbd2-CKI1 allele gains its deleterious function that causes the weakness phenotype by a change of one amino acid. As for the other gene, hbd3 was mapped to the NBS-LRR gene cluster region. It is the most common class of R-gene that triggers the immune signal in response to pathogen attack. Expression analysis of pathogen response marker genes suggested that weakness phenotype in this hybrid breakdown can be attributed to an autoimmune response. So far, this is the first evidence linking autoimmune response to post-zygotic isolation in rice. This finding provides a new insight in understanding the molecular and evolutionary mechanisms establishing post-zygotic isolation in plants.


Theoretical and Applied Genetics | 2003

Fine linkage mapping enables dissection of closely linked quantitative trait loci for seed dormancy and heading in rice

Yoshinobu Takeuchi; Shaoyang Lin; Takuji Sasaki; Masahiro Yano

Abstract. Two quantitative trait loci (QTLs) for seed dormancy (tentatively designated Sdr1) and heading date (Hd8) have been mapped to approximately the same region on chromosome 3 by interval mapping of backcross inbred lines derived from crosses between the rice cultivars Nipponbare (japonica) and Kasalath (indica). To clarify whether Sdr1 and Hd8 could be dissected genetically, we carried out fine-scale mapping with an advanced backcross progeny. We selected a BC4F1 plant, in which a small chromosomal region including Sdr1 and Hd8, on the short arm of chromosome 3, remained heterozygous, whereas all the other chromosomal regions were homozygous for Nipponbare. Days-to-heading and seed germination rate in the BC4F2 plants showed continuous variation. Ten BC4F2 plants with recombination in the vicinity of Sdr1 and Hd8 were selected on the basis of the genotypes of the restriction fragment length polymorphism (RFLP) markers flanking both QTLs. Genotypes of those plants for Sdr1 and Hd8 were determined by advanced progeny testing of BC4F4 families. Sdr1 was mapped between the RFLP markers R10942 and C2045, and co-segregated with C1488. Hd8 was also mapped between C12534S and R10942. Six recombination events were detected between Sdr1 and Hd8. These results clearly demonstrate that Sdr1 and Hd8 were tightly linked. Nearly isogenic lines for Sdr1 and Hd8 were selected by marker-assisted selection.


Theoretical and Applied Genetics | 1997

Mapping quantitative trait loci associated with regeneration ability of seed callus in rice, Oryza sativa L.

F. Taguchi-Shiobara; Shaoyang Lin; K. Tanno; Takao Komatsuda; Masahiro Yano; Takuji Sasaki; S. Oka

Abstract Quantitative trait loci (QTL) controlling the regeneration ability of rice seed callus were detected using 245 RFLP markers and 98 BC1F5 lines derived from two varieties, ‘Nipponbare’ and ‘Kasalath’. Regeneration ability was evaluated by two indices: average number of regenerated shoots per callus (NRS) and regeneration rate (RR). The BC1F5 lines showed continuous segregation for both indices. Five putative QTL for NRS (tentatively named qRg1, qRg2, qRg4a, qRg4b and qRg4c) located on chromosomes 1, 2 and 4 were detected. Digenic interaction among these detected QTL was not significant (P<0.01). Among the five QTL detected, four ‘Kasalath’ alleles and one ‘Nipponbare’ allele increased NRS. According to an estimate based on the nearest marker loci, the five QTL accounted for 38.5% of the total phenotypic variation of the BC1F5 lines. For RR, four putative QTL were detected on chromosomes 2 and 4, and all of these were in the same chromosomal regions as the NRS QTL. The four RR QTL accounted for 32.6% of the total phenotypic variation.


Theoretical and Applied Genetics | 2008

Detection of quantitative trait loci controlling extremely early heading in rice.

Y. Nonoue; K. Fujino; Y. Hirayama; Utako Yamanouchi; Shaoyang Lin; Masahiro Yano

To clarify the genetic basis of extremely early heading in rice, we conducted quantitative trait locus (QTL) analyses using F2 populations from two genetically wide cross combinations, Hayamasari/Kasalath (HaF2) and Hoshinoyume/Kasalath (HoF2). Hayamasari and Hoshinoyume are extremely early-heading japonica cultivars. Photoperiod sensitivity is completely lost in Hayamasari and weak in Hoshinoyume. Three QTLs, QTL(chr6), QTL(chr7), and QTL(chr8), for days-to-heading (DTH) in HaF2 were detected on chromosomes 6, 7, and 8, respectively, and QTL(chr6) and QTL(chr7) were detected in HoF2. On the basis of the chromosomal locations, QTL(chr6), QTL(chr7), and QTL(chr8) may be likely to be Hd1, Hd4, and Hd5, respectively, which had been detected previously as QTLs for DTH in an F2 population of Nipponbare × Kasalath. Alleles of QTL(chr7) decreased DTH dramatically in both Hayamasari and Hoshinoyume, suggesting that QTL(chr7) has a major role in determining extremely early heading. In addition, allele-specific interactions were detected between QTL(chr6), QTL(chr7) and QTL(chr8). This result suggests that not only allelic differences but also epistatic interactions contribute to extremely early heading. QTL(chr8) was detected in HaF2, but not in HoF2, suggesting that it determines the difference in DTH between Hayamasari and Hoshinoyume. A major QTL was also detected in the region of QTL(chr8) in QTL analysis using an F2 population of Hayamasari × Hoshinoyume. This result supports the idea that QTL(chr8) is a major factor that determines the difference in DTH between Hayamasari and Hoshinoyume, and is involved in photoperiod sensitivity.


Science | 2005

Cytokinin Oxidase Regulates Rice Grain Production

Motoyuki Ashikari; Hitoshi Sakakibara; Shaoyang Lin; Toshio Yamamoto; Tomonori Takashi; Asuka Nishimura; Enrique R. Angeles; Qian Qian; Hidemi Kitano; Makoto Matsuoka


Genetics | 1998

A High-Density Rice Genetic Linkage Map with 2275 Markers Using a Single F2 Population

Yoshiaki Harushima; Masahiro Yano; Ayahiko Shomura; Mikiko Sato; Tomotoshi Shimano; Yoshihide Kuboki; Toshio Yamamoto; Shaoyang Lin; Baltazar A. Antonio; Arnold Parco; Hiromi Kajiya; N. Huang; Kimiko Yamamoto; Yoshiaki Nagamura; Nori Kurata; Gurdev S. Khush; Takuji Sasaki

Collaboration


Dive into the Shaoyang Lin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge