Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sharad C. Mistry is active.

Publication


Featured researches published by Sharad C. Mistry.


Nature Communications | 2011

Global kinomic and phospho-proteomic analyses of the human malaria parasite Plasmodium falciparum

Lev Solyakov; Jean Halbert; Mahmood M. Alam; Jean-Philippe Semblat; Dominique Dorin-Semblat; Luc Reininger; Andrew R. Bottrill; Sharad C. Mistry; Abdirhaman Abdi; Clare Fennell; Zoe Holland; Claudia Demarta; Yvan Bouza; Audrey Sicard; Marie-Paule Nivez; Sylvain Eschenlauer; Tenzing Lama; Divya Catherine Thomas; Pushkar Sharma; Shruti Agarwal; Selina Kern; Gabriele Pradel; Michele Graciotti; Andrew B. Tobin; Christian Doerig

The role of protein phosphorylation in the life cycle of malaria parasites is slowly emerging. Here we combine global phospho-proteomic analysis with kinome-wide reverse genetics to assess the importance of protein phosphorylation in Plasmodium falciparum asexual proliferation. We identify 1177 phosphorylation sites on 650 parasite proteins that are involved in a wide range of general cellular activities such as DNA synthesis, transcription and metabolism as well as key parasite processes such as invasion and cyto-adherence. Several parasite protein kinases are themselves phosphorylated on putative regulatory residues, including tyrosines in the activation loop of PfGSK3 and PfCLK3; we show that phosphorylation of PfCLK3 Y526 is essential for full kinase activity. A kinome-wide reverse genetics strategy identified 36 parasite kinases as likely essential for erythrocytic schizogony. These studies not only reveal processes that are regulated by protein phosphorylation, but also define potential anti-malarial drug targets within the parasite kinome.


Journal of Biological Chemistry | 2011

Differential G-protein-coupled receptor phosphorylation provides evidence for a signaling bar code.

Adrian J. Butcher; Rudi Prihandoko; Kok Choi Kong; Phillip McWilliams; Jennifer Edwards; Andrew R. Bottrill; Sharad C. Mistry; Andrew B. Tobin

G-protein-coupled receptors are hyper-phosphorylated in a process that controls receptor coupling to downstream signaling pathways. The pattern of receptor phosphorylation has been proposed to generate a “bar code” that can be varied in a tissue-specific manner to direct physiologically relevant receptor signaling. If such a mechanism existed, receptors would be expected to be phosphorylated in a cell/tissue-specific manner. Using tryptic phosphopeptide maps, mass spectrometry, and phospho-specific antibodies, it was determined here that the prototypical Gq/11-coupled M3-muscarinic receptor was indeed differentially phosphorylated in various cell and tissue types supporting a role for differential receptor phosphorylation in directing tissue-specific signaling. Furthermore, the phosphorylation profile of the M3-muscarinic receptor was also dependent on the stimulus. Full and partial agonists to the M3-muscarinic receptor were observed to direct phosphorylation preferentially to specific sites. This hitherto unappreciated property of ligands raises the possibility that one mechanism underlying ligand bias/functional selectivity, a process where ligands direct receptors to preferred signaling pathways, may be centered on the capacity of ligands to promote receptor phosphorylation at specific sites.


Proceedings of the National Academy of Sciences of the United States of America | 2010

The M3-muscarinic receptor regulates learning and memory in a receptor phosphorylation/arrestin-dependent manner

Benoit Poulin; Adrian J. Butcher; Phillip McWilliams; Julie-Myrtille Bourgognon; Robert Pawlak; Kok Choi Kong; Andrew R. Bottrill; Sharad C. Mistry; Jürgen Wess; Elizabeth M. Rosethorne; Steven J. Charlton; Andrew B. Tobin

Degeneration of the cholinergic system is considered to be the underlying pathology that results in the cognitive deficit in Alzheimers disease. This pathology is thought to be linked to a loss of signaling through the cholinergic M1-muscarinic receptor subtype. However, recent studies have cast doubt on whether this is the primary receptor mediating cholinergic-hippocampal learning and memory. The current study offers an alternative mechanism involving the M3-muscarinic receptor that is expressed in numerous brain regions including the hippocampus. We demonstrate here that M3-muscarinic receptor knockout mice show a deficit in fear conditioning learning and memory. The mechanism used by the M3-muscarinic receptor in this process involves receptor phosphorylation because a knockin mouse strain expressing a phosphorylation-deficient receptor mutant also shows a deficit in fear conditioning. Consistent with a role for receptor phosphorylation, we demonstrate that the M3-muscarinic receptor is phosphorylated in the hippocampus following agonist treatment and following fear conditioning training. Importantly, the phosphorylation-deficient M3-muscarinic receptor was coupled normally to Gq/11-signaling but was uncoupled from phosphorylation-dependent processes such as receptor internalization and arrestin recruitment. It can, therefore, be concluded that M3-muscarinic receptor–dependent learning and memory depends, at least in part, on receptor phosphorylation/arrestin signaling. This study opens the potential for biased M3-muscarinic receptor ligands that direct phosphorylation/arrestin-dependent (non-G protein) signaling as being beneficial in cognitive disorders.


Journal of Cell Biology | 2007

Phosphorylation and regulation of a G protein-coupled receptor by protein kinase CK2

Ignacio Torrecilla; Elizabeth J. Spragg; Benoit Poulin; Phillip McWilliams; Sharad C. Mistry; Andree Blaukat; Andrew B. Tobin

We demonstrate a role for protein kinase casein kinase 2 (CK2) in the phosphorylation and regulation of the M3-muscarinic receptor in transfected cells and cerebellar granule neurons. On agonist occupation, specific subsets of receptor phosphoacceptor sites (which include the SASSDEED motif in the third intracellular loop) are phosphorylated by CK2. Receptor phosphorylation mediated by CK2 specifically regulates receptor coupling to the Jun-kinase pathway. Importantly, other phosphorylation-dependent receptor processes are regulated by kinases distinct from CK2. We conclude that G protein–coupled receptors (GPCRs) can be phosphorylated in an agonist-dependent fashion by protein kinases from a diverse range of kinase families, not just the GPCR kinases, and that receptor phosphorylation by a defined kinase determines a specific signalling outcome. Furthermore, we demonstrate that the M3-muscarinic receptor can be differentially phosphorylated in different cell types, indicating that phosphorylation is a flexible regulatory process where the sites that are phosphorylated, and hence the signalling outcome, are dependent on the cell type in which the receptor is expressed.


Nature Communications | 2015

Phosphoproteomics reveals malaria parasite Protein Kinase G as a signalling hub regulating egress and invasion

Mahmood M. Alam; Lev Solyakov; Andrew R. Bottrill; Christian Flueck; Faiza Amber Siddiqui; Shailja Singh; Sharad C. Mistry; Maria Viskaduraki; Kate Lee; Christine S. Hopp; Chetan E. Chitnis; Christian Doerig; Robert W. Moon; Judith L. Green; Anthony A. Holder; David A. Baker; Andrew B. Tobin

Our understanding of the key phosphorylation-dependent signalling pathways in the human malaria parasite, Plasmodium falciparum, remains rudimentary. Here we address this issue for the essential cGMP-dependent protein kinase, PfPKG. By employing chemical and genetic tools in combination with quantitative global phosphoproteomics, we identify the phosphorylation sites on 69 proteins that are direct or indirect cellular targets for PfPKG. These PfPKG targets include proteins involved in cell signalling, proteolysis, gene regulation, protein export and ion and protein transport, indicating that cGMP/PfPKG acts as a signalling hub that plays a central role in a number of core parasite processes. We also show that PfPKG activity is required for parasite invasion. This correlates with the finding that the calcium-dependent protein kinase, PfCDPK1, is phosphorylated by PfPKG, as are components of the actomyosin complex, providing mechanistic insight into the essential role of PfPKG in parasite egress and invasion.


Journal of Biological Chemistry | 2009

N-Methyl-d-aspartate Receptors Mediate the Phosphorylation and Desensitization of Muscarinic Receptors in Cerebellar Granule Neurons

Adrian J. Butcher; Ignacio Torrecilla; Kenneth W. Young; Kok Choi Kong; Sharad C. Mistry; Andrew R. Bottrill; Andrew B. Tobin

Changes in synaptic strength mediated by ionotropic glutamate N-methyl-d-asparate (NMDA) receptors is generally considered to be the molecular mechanism underlying memory and learning. NMDA receptors themselves are subject to regulation through signaling pathways that are activated by G-protein-coupled receptors (GPCRs). In this study we investigate the ability of NMDA receptors to regulate the signaling of GPCRs by focusing on the Gq/11-coupled M3-muscarinic receptor expressed endogenously in mouse cerebellar granule neurons. We show that NMDA receptor activation results in the phosphorylation and desensitization of M3-muscarinic receptors through a mechanism dependent on NMDA-mediated calcium influx and the activity of calcium-calmodulin-dependent protein kinase II. Our study reveals a complex pattern of regulation where GPCRs (M3-muscarinic) and NMDA receptors can feedback on each other in a process that is likely to influence the threshold value of signaling networks involved in synaptic plasticity.


Biochemistry | 2009

Peroxide-dependent formation of a covalent link between Trp51 and the heme in cytochrome c peroxidase.

Zoi Pipirou; Victor Guallar; Jaswir Basran; Clive L. Metcalfe; Emma J. Murphy; Andrew R. Bottrill; Sharad C. Mistry; Emma Lloyd Raven

Ascorbate peroxidase (APX), cytochrome c peroxidase (CcP), and the catalase-peroxidases (KatG) share very similar active site structures and are distinguished from other peroxidases by the presence of a distal tryptophan residue. In KatG, this distal tryptophan forms a covalent link to an adjacent tyrosine residue, which in turn links to a methionine residue. We have previously shown [ Pipirou, Z. et al. ( 2007 ) Biochemistry 46 , 2174 - 2180 ] that reaction of APX with peroxide leads, over long time scales, to formation of a covalent link with the distal tryptophan (Trp41) in a mechanism that proceeds through initial formation of a compound I species bearing a porphyrin pi-cation radical followed by radical formation on Trp41, as implicated in the KatG enzymes. Formation of such a covalent link in CcP has never been reported, and we proposed that this could be because compound I in CcP uses Trp191 instead of a porphyrin pi-cation radical. To test this, we have examined the reactivity of the W191F variant of CcP with H(2)O(2), in which formation of a porphyrin pi-cation radical occurs. We show, using electronic spectroscopy, HPLC, and mass spectroscopy, that in W191F partial formation of a covalent link from Trp51 to the heme is observed, as in APX. Radical formation on Trp51, as seen for KatG and APX, is implicated; this is supported by QM/MM calculations. Collectively, the data show that all three members of the class I heme peroxidases can support radical formation on the distal tryptophan and that the reactivity of this radical can be controlled either by the protein structure or by the nature of the compound I intermediate.


Journal of Neurochemistry | 2012

Mass spectrometry analysis of human P2X1 receptors; insight into phosphorylation, modelling and conformational changes

Jonathan A. Roberts; Andrew R. Bottrill; Sharad C. Mistry; Richard J. Evans

Recombinant FlagHis6 tagged Human P2X1 receptors expressed in HEK293 cells were purified, digested with trypsin and analysed by mass spectroscopy (96% coverage following de‐glycosylation and reduction). The receptor was basally phosphorylated at residues S387, S388 and T389 in the carboxyl terminus, a triple alanine mutant of these residues had a modest ~ 25% increase in current amplitude and recovery from desensitization. Chemical modification showed that intracellular lysine residues close to the transmembrane domains and the membrane stabilization motif are accessible to the aqueous environment. The membrane‐impermeant cross‐linking reagent 3,3′‐Dithiobis (sulfosuccinimidylpropionate) (DTSSP) reduced agonist binding and P2X1 receptor currents by > 90%, and modified lysine residues were identified by mass spectroscopy. Mutation to remove reactive lysine residues around the ATP‐binding pocket had no effect on inhibtion of agonist evoked currents following DTSSP. However, agonist evoked currents were ~ 10‐fold higher than for wild type following DTSSP treatment for mutants K199R, K221R and K199R‐K221R. These mutations remove reactive residues distant from the agonist binding pocket that are close enough to cross‐link adjacent subunits. These results suggest that conformational change in the P2X1 receptor is required for co‐ordination of ATP action.


Journal of Medicinal Chemistry | 2009

Conformationally constrained mimetics of laminin peptide YIGSR as precursors for antimetastatic disintegrins.

Angelo Bella; Helen Lewis; Jennifer Phu; Andrew R. Bottrill; Sharad C. Mistry; Christine E. Pullar; Maxim G. Ryadnov

Conformationally constrained mimetics of the laminin cell-adhesion site, YIGSR, are described. The site is the natural antagonist of the integrin-associated laminin receptor 1 (LAMR1) known to mediate metastatic tumor adhesion. The attachment of selected metastatic cell lines toward the constrained antagonists has been assessed. Observed differential responses prompted by folding preferences of the mimetics revealed stronger attachment activities for turnlike structures. The results permit the conformational design of antimetastatic disintegrins.


Proteomics | 2016

Mass spectrometry insights into a tandem ubiquitin‐binding domain hybrid engineered for the selective recognition of unanchored polyubiquitin

Daniel Scott; Tom P Garner; Jed Long; Jo Strachan; Sharad C. Mistry; Andrew R. Bottrill; David Tooth; Mark S. Searle; Neil J. Oldham; Robert Layfield

Unanchored polyubiquitin chains are emerging as important regulators of cellular physiology with diverse roles paralleling those of substrate‐conjugated polyubiquitin. However tools able to discriminate unanchored polyubiquitin chains of different isopeptide linkages have not been reported. We describe the design of a linker‐optimized ubiquitin‐binding domain hybrid (t‐UBD) containing two UBDs, a ZnF‐UBP domain in tandem with a linkage‐selective UBA domain, which exploits avidity effects to afford selective recognition of unanchored Lys48‐linked polyubiquitin chains. Utilizing native MS to quantitatively probe binding affinities we confirm cooperative binding of the UBDs within the synthetic protein, and desired binding specificity for Lys48‐linked ubiquitin dimers. Furthermore, MS/MS analyses indicate that the t‐UBD, when applied as an affinity enrichment reagent, can be used to favor the purification of endogenous unanchored Lys48‐linked polyubiquitin chains from mammalian cell extracts. Our study indicates that strategies for the rational design and engineering of polyubiquitin chain‐selective binding in nonbiological polymers are possible, paving the way for the generation of reagents to probe unanchored polyubiquitin chains of different linkages and more broadly the ‘ubiquitome’. All MS data have been deposited in the ProteomeXchange with identifier PXD004059 (http://proteomecentral.proteomexchange.org/dataset/PXD004059).

Collaboration


Dive into the Sharad C. Mistry's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benoit Poulin

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge