Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sharan Bobbala is active.

Publication


Featured researches published by Sharan Bobbala.


Pharmaceutical Research | 2016

Is There an Optimal Formulation and Delivery Strategy for Subunit Vaccines

Sharan Bobbala; Sarah Hook

Modern vaccine design has moved away from attenuated or inactivated whole-pathogen vaccines to more pure and defined subunit vaccines. However subunit antigens have poor bioavailability and stability and lack immunogenicity. To overcome these issues subunit vaccines have to be administered in a suitable delivery system in combination with immune stimulants. Many different delivery systems have been developed and investigated each having different modes of action, for example increasing delivery and/or sustaining delivery of antigen to immune cells. In addition a number of different routes of immunization are possible and these can play a crucial role in determining the fate of an immune response. In this review the different strategies for the delivery of prophylactic and therapeutic subunit vaccines along with the impact of these on the immune responses generated are discussed.


International Journal of Pharmaceutics | 2015

Impact of implant composition of twin-screw extruded lipid implants on the release behavior

Marie-Paule Even; Sharan Bobbala; Kok Liang Kooi; Sarah Hook; Gerhard Winter; Julia Engert

The development of vaccine delivery systems that will remove or reduce the need for repeated dosing has led to the investigation of sustained release systems. In this context, the duration of antigen release is of great importance as is the requirement for concomitant adjuvant release. In this work, lipid implants consisting of cholesterol (CHOL), soybean lecithin, Dynasan 114 (D114), the model antigen ovalbumin (OVA) and the adjuvant Quil-A (QA) were produced by twin-screw extrusion. The release of antigen and adjuvant was investigated in vitro and we observed complete OVA release over a period of 7 days while QA was released in a linear fashion over a period of up to 12 days. In order to extend OVA release, lipid implants were subjected to post-extrusion curing at 45-55°C. The OVA release could be extended to up to 14 days. Furthermore the influence of the implant composition on the release of the model antigen was investigated. It was shown that the percentage of cholesterol in particular plays an important role in modulating release.


Aaps Journal | 2016

Novel Injectable Pentablock Copolymer Based Thermoresponsive Hydrogels for Sustained Release Vaccines.

Sharan Bobbala; Viral Tamboli; Arlene McDowell; Ashim K. Mitra; Sarah Hook

The need for multiple vaccinations to enhance the immunogenicity of subunit vaccines may be reduced by delivering the vaccine over an extended period of time. Here, we report two novel injectable pentablock copolymer based thermoresponsive hydrogels made of polyethyleneglycol-polycaprolactone-polylactide-polycaprolactone-polyethyleneglycol (PEG-PCL-PLA-PCL-PEG) with varying ratios of polycaprolactone (PCL) and polylactide (PLA), as single shot sustained release vaccines. Pentablock copolymer hydrogels were loaded with vaccine-encapsulated poly lactic-co-glycolic acid nanoparticles (PLGA-NP) or with the soluble vaccine components. Incorporation of PLGA-NP into the thermoresponsive hydrogels increased the complex viscosity of the gels, lowered the gelation temperature, and minimized the burst release of antigen and adjuvants. The two pentablock hydrogels stimulated both cellular and humoral responses. The addition of PLGA-NP to the hydrogels sustained immune responses for up to 49xa0days. The polymer with a higher ratio of PCL to PLA formed a more rigid gel, induced stronger immune responses, and stimulated effective anti-tumor responses in a prophylactic melanoma tumor model.


Journal of Chromatography B | 2015

Quantitation of the immunological adjuvants, monophosphoryl lipid A and Quil A in poly (lactic-co-glycolic acid) nanoparticles using high performance liquid chromatography with evaporative light scattering detection

Sharan Bobbala; Arlene McDowell; Sarah Hook

Monophosphoryl lipid A (MPL) and Quil A are two immunological adjuvants commonly used in vaccines. At present no simple, validated methods for the quantification of Quil A and MPL have been previously reported therefore the aim of the current study was to develop a simple, fast and validated method to quantify MPL and Quil A using high performance liquid chromatography evaporative light scattering detection (HPLC-ELSD). The HPLC-ELSD technique was carried out using a ZORBAX Eclipse XDB-C8 column (2.1×50 mm; particle size, 3.5 μm) in an isocratic elution mode at 25 °C. MPL was eluted at a retention time of 1.8 min with methanol-water as the mobile phase and a detector temperature of 75 °C. Quil A was resolved as three peaks with retention times of 4.1, 5.5 and 6.4 min with a detector temperature of 30 °C and with water-acetonitrile and 0.01% formic acid as the mobile phase. The nebulizer pressure and gain were set at 3.5 bar and 10, respectively. Calibration curves plotted for both the adjuvants had an R(2)>0.997. Accuracy, intra- and inter-day precision were within the accepted limits. The limit of detection for MPL and Quil A were calculated as 1.343 and 2.06 μg/mL, respectively. The limit of quantification was 2.445 for MPL and 8.97 μg/mL for Quil A. This analytical method was used to quantify the entrapment and in vitro release of MPL and Quil A in a poly lactic-co-glycolic acid (PLGA) nanoparticle vaccine.


Nature Communications | 2018

Sustained micellar delivery via inducible transitions in nanostructure morphology

Nicholas Karabin; Sean David Allen; Ha Kyung Kwon; Sharan Bobbala; Emre Firlar; Tolou Shokuhfar; Kenneth R. Shull; Evan A. Scott

Nanocarrier administration has primarily been restricted to intermittent bolus injections with limited available options for sustained delivery in vivo. Here, we demonstrate that cylinder-to-sphere transitions of self-assembled filomicelle (FM) scaffolds can be employed for sustained delivery of monodisperse micellar nanocarriers with improved bioresorptive capacity and modularity for customization. Modular assembly of FMs from diverse block copolymer (BCP) chemistries allows in situ gelation into hydrogel scaffolds following subcutaneous injection into mice. Upon photo-oxidation or physiological oxidation, molecular payloads within FMs transfer to micellar vehicles during the morphological transition, as verified in vitro by electron microscopy and in vivo by flow cytometry. FMs composed of multiple distinct BCP fluorescent conjugates permit multimodal analysis of the scaffold’s non-inflammatory bioresorption and micellar delivery to immune cell populations for one month. These scaffolds exhibit highly efficient bioresorption wherein all components participate in retention and transport of therapeutics, presenting previously unexplored mechanisms for controlled nanocarrier delivery.Nanocarrier administration is often performed via intermittent bolus injection while sustained delivery platforms are rarely reported. Here the authors demonstrate that the cylinder-to-sphere transitions of self-assembled filomicelle scaffolds can be used for sustained delivery with improved resorptive capacity and biocompatibility.


European Journal of Pharmaceutics and Biopharmaceutics | 2017

Twin-screw extruded lipid implants containing TRP2 peptide for tumour therapy.

Marie-Paule Even; Sharan Bobbala; Blake Gibson; Sarah Hook; Gerhard Winter; Julia Engert

&NA; Much effort has been put in the development of specific anti‐tumour immunotherapies over the last few years, and several studies report on the use of liposomal carriers for tumour‐associated antigens. In this work, the use of lipid implants, prepared using two different extruders, was investigated for sustained delivery in tumour therapy. The implants consisted of cholesterol, soybean lecithin, Dynasan 114, trehalose, ovalbumin (OVA) or a TRP2 peptide, and Quil‐A. Implants were first produced on a Haake Minilab extruder, and then a scale‐down to minimal quantities of material on a small scale ZE mini extruder was performed. All formulations were characterised in terms of extrudability, implant properties and in vitro release behaviour of the model antigen ovalbumin. The type of extruder used to produce the implants had a major influence on implant properties and the release behaviour, demonstrating that extrusion parameters and lipid formulations have to be individually adapted to each extrusion device. Subsequently, lipid implants containing TRP‐2 peptide were extruded on the ZE mini extruder and investigated in vitro and in vivo. The in vivo study showed that mice having received TRP2 loaded implants had delayed tumour growth for 3 days compared to groups having received no TRP2. Graphical abstract Figure. No caption available.


Nano Research | 2018

Polymersomes scalably fabricated via flash nanoprecipitation are non-toxic in non-human primates and associate with leukocytes in the spleen and kidney following intravenous administration

Sean David Allen; Yu-Gang Liu; Sharan Bobbala; Lei Cai; Peter I. Hecker; Ryan E. Temel; Evan A. Scott

Vesicular nanocarrier formulations confer the ability to deliver hydrophobic and hydrophilic cargos simultaneously to cells of interest in vivo. While liposomal formulations reached the clinic long ago, younger technologies such as polymeric vesicles (polymersomes) have yet to make the transition to clinical approval and use, in part due to difficulties in ensuring their safe and scalable production. In this work, we demonstrate the scalable production of poly(ethylene glycol)-block-poly(propylene sulfide) (PEG-bl-PPS) polymersomes via flash nanoprecipitation, and further show the safe administration of these nanocarriers to mice and non-human primates. In mice, PEG-bl-PPS polymersomes were found to be well tolerated at up to 200 mg/(kg·week). Following the administration of a more relevant 20 mg/(kg·week) dosage in non-human primates, polymersomes were found to associate with numerous phagocytic immune cell populations, including a remarkable 68% of plasmacytoid dendritic cells and > 95% of macrophages in the spleen, while showing no toxicity or abnormalities in the liver, kidney, spleen, or blood. Despite the presence of a dense PEG corona, neither anti-PEG antibodies nor complement activation were detected. This work provides evidence of the translatability of PEG-bl-PPS polymersomes into the clinic for therapeutic applications in humans.


Journal of the American Chemical Society | 2018

ExTzBox: A Glowing Cyclophane for Live-Cell Imaging

Indranil Roy; Sharan Bobbala; Jiawang Zhou; Minh T. Nguyen; Siva Krishna Mohan Nalluri; Yilei Wu; Daniel P. Ferris; Evan A. Scott; Michael R. Wasielewski; J. Fraser Stoddart

The ideal fluorescent probe for live-cell imaging is bright and non-cytotoxic and can be delivered easily into the living cells in an efficient manner. The design of synthetic fluorophores having all three of these properties, however, has proved to be challenging. Here, we introduce a simple, yet effective, strategy based on well-established chemistry for designing a new class of fluorescent probes for live-cell imaging. A box-like hybrid cyclophane, namely ExTzBox·4X (6·4X, X = PF6-, Cl-), has been synthesized by connecting an extended viologen (ExBIPY) and a dipyridyl thiazolothiazole (TzBIPY) unit in an end-to-end fashion with two p-xylylene linkers. Photophysical studies show that 6·4Cl has a quantum yield ΦF = 1.00. Furthermore, unlike its ExBIPY2+ and TzBIPY2+ building units, 6·4Cl is non-cytotoxic to RAW 264.7 macrophages, even with a loading concentration as high as 100 μM, presumably on account of its rigid box-like structure which prevents its intercalation into DNA and may inhibit other interactions with it. After gaining an understanding of the toxicity profile of 6·4Cl, we employed it in live-cell imaging. Confocal microscopy has demonstrated that 64+ is taken up by the RAW 264.7 macrophages, allowing the cells to glow brightly with blue laser excitation, without any hint of photobleaching or disruption of normal cell behavior under the imaging conditions. By contrast, the acyclic reference compound Me2TzBIPY·2Cl (4·2Cl) shows very little fluorescence inside the cells, which is quenched completely under the same imaging conditions. In vitro cell investigations underscore the significance of using highly fluorescent box-like rigid cyclophanes for live-cell imaging.


Nanomedicine: Nanotechnology, Biology and Medicine | 2018

Influences of nanocarrier morphology on therapeutic immunomodulation

Molly Frey; Sharan Bobbala; Nicholas Karabin; Evan A. Scott

Nanomaterials provide numerous advantages for the administration of therapeutics, particularly as carriers of immunomodulatory agents targeting specific immune cell populations during immunotherapy. While the physicochemical characteristics of nanocarriers have long been linked to their therapeutic efficacy and applications, focus has primarily been placed on assessing influences of size and surface chemistry. In addition to these materials properties, the nanostructure morphology, in other words,xa0shape and aspect ratio, has emerged as an equally important feature of nanocarriers that can dictate mechanisms of endocytosis, biodistribution and degree of cytotoxicity. In this review, we will highlight how the morphological features of nanostructures influence the immune responses elicited during therapeutic immunomodulation.


Journal of Controlled Release | 2018

Sequential intracellular release of water-soluble cargos from Shell-crosslinked polymersomes

Fanfan Du; Sharan Bobbala; Sijia Yi; Evan A. Scott

ABSTRACT Polymer vesicles, i.e. polymersomes (PS), present unique nanostructures with an interior aqueous core that can encapsulate multiple independent cargos concurrently. However, the sequential release of such co‐loaded actives remains a challenge. Here, we report the rational design and synthesis of oxidation‐responsive shell‐crosslinked PS with capability for the controlled, sequential release of encapsulated hydrophilic molecules and hydrogels. Amphiphilic brush block copolymers poly(oligo(ethylene glycol) methyl ether methacrylate)‐b‐poly(oligo(propylene sulfide) methacrylate) (POEGMA‐POPSMA) were prepared to fabricate PS via self‐assembly in aqueous solution. As a type of unique drug delivery vehicle, the interior of the PS was co‐loaded with hydrophilic molecules and water‐soluble poly(N‐isopropylacrylamide) (PNIPAM) conjugates. Due to the thermosensitivity of PNIPAM, PNIPAM conjugates within the PS aqueous interior underwent a phase transition to form hydrogels in situ when the temperature was raised above the lower critical solution temperature (LCST) of PNIPAM. Via control of the overall shell permeability by oxidation, we realized the sequential release of two water‐soluble payloads based on the assumption that hydrogels have much smaller membrane permeability than that of molecular cargos. The ability to control the timing of release of molecular dyes and PNIPAM‐based hydrogels was also observed within live cells. Furthermore, leakage of hydrogels from the PS was effectively alleviated in comparison to molecular cargos, which would facilitate intracellular accumulation and prolonged retention of hydrogels within the cell cytoplasm. Thus, we demonstrate that the integration of responsive hydrogels into PS with crosslinkable membranes provides a facile and versatile technique to control the stability and release of water‐soluble cargos for drug delivery purposes. Graphical abstract Figure. No Caption available.

Collaboration


Dive into the Sharan Bobbala's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ashim K. Mitra

University of Missouri–Kansas City

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emre Firlar

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Fanfan Du

Northwestern University

View shared research outputs
Researchain Logo
Decentralizing Knowledge