Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sharilyn Almodovar is active.

Publication


Featured researches published by Sharilyn Almodovar.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2009

Golgi dysfunction is a common feature in idiopathic human pulmonary hypertension and vascular lesions in SHIV-nef-infected macaques

Pravin B. Sehgal; Somshuvra Mukhopadhyay; Kirit Patel; Fang Xu; Sharilyn Almodovar; Rubin M. Tuder; Sonia C. Flores

Golgi dysfunction has been previously investigated as a mechanism involved in monocrotaline-induced pulmonary hypertension (PAH). In the present study, we addressed whether Golgi dysfunction might occur in pulmonary vascular cells in idiopathic PAH (IPAH) and whether there might be a causal relationship between trafficking dysfunction and vasculopathies of PAH. Quantitative immunostaining for the Golgi tethers giantin and p115 on human lung tissue from patients with IPAH (n = 6) compared with controls demonstrated a marked cytoplasmic dispersal of giantin- and p115-bearing vesicular elements in vascular cells in the proliferative, obliterative, and plexiform lesions in IPAH and an increase in the amounts of these Golgi tethers/matrix proteins per cell. The causality question was approached by genetic means using human immunodeficiency virus (HIV)-Nef, a protein that disrupts endocytic and trans-Golgi trafficking. Macaques infected with a chimeric simian immunodeficiency virus (SIV) containing the HIV-nef gene (SHIV-nef), but not the nonchimeric SIV virus containing the endogenous SIV-nef gene, displayed pulmonary arterial vasculopathies similar to those in human IPAH. Giantin and p115 levels and their subcellular distribution in pulmonary vascular cells in lungs of SHIV-nef infected macaques (n = 4) were compared with SIV-infected (n = 3) and an uninfected macaque control. Only macaques infected with chimeric SHIV-nef showed pulmonary vascular lesions containing cells with dramatic cytoplasmic dispersal and an increase in giantin and p115. Specifically, the HIV-Nef-positive cells showed increased giantin, p115, and the activated transcription factor PY-STAT3. These data represent the first test of the Golgi dysfunction hypothesis in IPAH and place trafficking and Golgi disruption in the chain of causality of pulmonary vasculopathies in the macaque model.


Proceedings of the American Thoracic Society | 2011

Pathogenesis of HIV-associated pulmonary hypertension: potential role of HIV-1 Nef.

Sharilyn Almodovar; Priscilla Y. Hsue; Julie Morelli; Laurence Huang; Sonia C. Flores

Infection with HIV increases the risk for lung diseases, including noninfectious pulmonary hypertension (PH). HIV-associated PH (HIV-PH) is an important lung disease in HIV-infected persons who live longer with antiretrovirals. The early stages of HIV-PH may be overlooked by healthcare providers due to nonspecific symptoms, including progressive dyspnea and nonproductive cough. HIV-PH may be detected via chest radiographs, CT scans, or electrocardiograms, but Doppler echocardiography is the most useful screening test to identify candidates for right heart catheterization. HIV-PH has a poor prognosis with high mortality; improved biomarkers to identify earlier stages of PH would benefit clinical care. The HIV-PH mechanism remains unknown, but HIV proteins such as Tat and Nef may play a role. HIV-1 Nef is a broad-spectrum adaptor protein that may affect HIV-infected and uninfected pulmonary vascular cells. Studies in macaques suggest that Nef is important in HIV-PH pathogenesis because monkeys infected with a chimeric simian immunodeficiency virus (SIV) expressing HIV-nef (SHIVnef) alleles, but not monkeys infected with the native SIV, develop pulmonary vascular remodeling. Four consistent amino acid mutations arose spontaneously in Nef passaged in the monkeys. To translate these findings to humans, one research endeavor of the Lung HIV Study focuses on the identification of HIV nef mutations in HIV-infected individuals with PH compared with HIV-infected normotensive patients. We present some of the preliminary evidence. Ongoing longitudinal studies will establish the connection between Nef mutations and the propensity for HIV-PH.


Clinical Microbiology and Infection | 2011

Pulmonary hypertension and human immunodeficiency virus infection: epidemiology, pathogenesis, and clinical approach

Stefania Cicalini; Sharilyn Almodovar; Elisabetta Grilli; Sonia C. Flores

In recent years, the pathogenic role of human immunodeficiency virus (HIV) and the clinical manifestations of HIV-associated pulmonary arterial hypertension (HIV-PAH), which currently represents one of the most severe complications of HIV infection, have received more attention HIV-PAH occurs at all stages of the disease, and does not seem to be related to the degree of immune deficiency. Many of the symptoms in HIV-PAH result from right ventricular dysfunction: the first clinical manifestation is effort intolerance and exertional dyspnoea that will progress to the point of breathlessness at rest. Echocardiography is an extremely useful tool for the diagnosis of HIV-PAH, and Doppler echocardiography can be used to estimate systolic pulmonary artery pressure. Assessment of haemodynamic measures by catheterization remains, however, the best test for evaluating the response to therapy. Cardiac catheterization is mandatory to definitively diagnose the disease and exclude any underlying cardiac shunt as the aetiology. Recently, effective therapies for pulmonary arterial hypertension (PAH) have been available, including prostanoids, endothelin receptor antagonists, and phosphodiesterase-5 inhibitors, allowing amelioration of symptoms and a better prognosis. However, HIV-PAH remains a progressive disease for which treatment is often unsatisfactory and there is no cure. As new efficient antiretroviral treatment is introduced, clinicians should expect to encounter an increasing number of cases of PAH in HIV-infected patients in the future.


American Journal of Physiology-heart and Circulatory Physiology | 2011

Dependence of Golgi apparatus integrity on nitric oxide in vascular cells: implications in pulmonary arterial hypertension

Jason E. Lee; Kirit Patel; Sharilyn Almodovar; Rubin M. Tuder; Sonia C. Flores; Pravin B. Sehgal

Although reduced bioavailability of nitric oxide (NO) has been implicated in the pathogenesis of pulmonary arterial hypertension (PAH), its consequences on organellar structure and function within vascular cells is largely unexplored. We investigated the effect of reduced NO on the structure of the Golgi apparatus as assayed by giantin or GM130 immunofluorescence in human pulmonary arterial endothelial (HPAECs) and smooth muscle (HPASMCs) cells, bovine PAECs, and human EA.hy926 endothelial cells. Golgi structure was also investigated in cells in tissue sections of pulmonary vascular lesions in idiopathic PAH (IPAH) and in macaques infected with a chimeric simian immunodeficiency virus containing the human immunodeficiency virus (HIV)-nef gene (SHIV-nef) with subcellular three-dimensional (3D) immunoimaging. Compounds with NO scavenging activity including 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), methylene blue, N-acetylcysteine, and hemoglobin markedly fragmented the Golgi in all cell types evaluated as did monocrotaline pyrrole, while LY-83583, sildenafil, fasudil, Y-27632, Tiron, Tempol, or H(2)O(2) did not. Golgi fragmentation by NO scavengers was inhibited by diethylamine NONOate, was evident in HPAECs after selective knockdown of endothelial nitric oxide synthase using small interfering RNA (siRNA), was independent of microtubule organization, required the GTPase dynamin 2, and was accompanied by depletion of α-soluble N-ethylmaleimide-sensitive factor (NSF) acceptor protein (α-SNAP) from Golgi membranes and codispersal of the SNAP receptor (SNARE) Vti1a with giantin. Golgi fragmentation was confirmed in endothelial and smooth muscle cells in pulmonary arterial lesions in IPAH and the SHIV-nef-infected macaque with subcellular 3D immunoimaging. In SHIV-nef-infected macaques Golgi fragmentation was observed in cells containing HIV-nef-bearing endosomes. The observed Golgi fragmentation suggests that NO plays a significant role in modulating global protein trafficking patterns that contribute to changes in the cell surface landscape and functional signaling in vascular cells.


PLOS ONE | 2014

Transfer of Intracellular HIV Nef to Endothelium Causes Endothelial Dysfunction

Ting Wang; Linden A. Green; Samir Gupta; Chul Wook Kim; Liang Wang; Sharilyn Almodovar; Sonia C. Flores; Igor Prudovsky; Paul Jolicoeur; Ziyue Liu; Matthias Clauss

With effective antiretroviral therapy (ART), cardiovascular diseases (CVD) are emerging as a major cause of morbidity and death in the aging HIV-infected population. To address whether HIV-Nef, a viral protein produced in infected cells even when virus production is halted by ART, can lead to endothelial activation and dysfunction, we tested Nef protein transfer to and activity in endothelial cells. We demonstrated that Nef is essential for major endothelial cell activating effects of HIV-infected Jurkat cells when in direct contact with the endothelium. In addition, we found that Nef protein in endothelial cells is sufficient to cause apoptosis, ROS generation and release of monocyte attractant protein-1 (MCP-1). The Nef protein-dependent endothelial activating effects can be best explained by our observation that Nef protein rapidly transfers from either HIV-infected or Nef-transfected Jurkat cells to endothelial cells between these two cell types. These results are of in vivo relevance as we demonstrated that Nef protein induces GFP transfer from T cells to endothelium in CD4.Nef.GFP transgenic mice and Nef is present in chimeric SIV-infected macaques. Analyzing the signal transduction effects of Nef in endothelial cells, we found that Nef-induced apoptosis is mediated through ROS-dependent mechanisms, while MCP-1 production is NF-kB dependent. Together, these data indicate that inhibition of Nef-associated pathways may be promising new therapeutic targets for reducing the risk for cardiovascular disease in the HIV-infected population.


Viral Immunology | 2014

The complexity of HIV persistence and pathogenesis in the lung under antiretroviral therapy: challenges beyond AIDS.

Sharilyn Almodovar

Antiretroviral therapy (ART) represents a significant milestone in the battle against AIDS. However, we continue learning about HIV and confronting challenges 30 years after its discovery. HIV has cleverly tricked both the host immune system and ART. First, the many HIV subtypes and recombinant forms have different susceptibilities to antiretroviral drugs, which may represent an issue in countries where ART is just being introduced. Second, even under the suppressive pressures of ART, HIV still increases inflammatory mediators, deregulates apoptosis and proliferation, and induces oxidative stress in the host. Third, the preference of HIV for CXCR4 as a co-receptor may also have noxious outcomes, including potential malignancies. Furthermore, HIV still replicates cryptically in anatomical reservoirs, including the lung. HIV impairs bronchoalveolar T-lymphocyte and macrophage immune responses, rendering the lung susceptible to comorbidities. In addition, HIV-infected individuals are significantly more susceptible to long-term HIV-associated complications. This review focuses on chronic obstructive pulmonary disease (COPD), pulmonary arterial hypertension, and lung cancer. Almost two decades after the advent of highly active ART, we now know that HIV-infected individuals on ART live as long as the uninfected population. Fortunately, its availability is rapidly increasing in low- and middle-income countries. Nevertheless, ART is not risk-free: the developed world is facing issues with antiretroviral drug toxicity, resistance, and drug-drug interactions, while developing countries are confronting issues with immune reconstitution inflammatory syndrome. Several aspects of the complexity of HIV persistence and challenges with ART are discussed, as well as suggestions for new avenues of research.


Annals of the American Thoracic Society | 2016

National Heart, Lung, and Blood Institute Workshop Summary: Enhancing Opportunities for Training and Retention of a Diverse Biomedical Workforce.

Gregg A. Duncan; Angelia Lockett; Leah R. Villegas; Sharilyn Almodovar; Jose L. Gomez; Sonia C. Flores; David S. Wilkes; Xenia Tigno

RATIONALE Committed to its mission of conducting and supporting research that addresses the health needs of all sectors of the nations population, the Division of Lung Diseases, National Heart, Lung, and Blood Institute of the National Institutes of Health (NHLBI/NIH) seeks to identify issues that impact the training and retention of underrepresented individuals in the biomedical research workforce. OBJECTIVES Early-stage investigators who received grant support through the NIH Research Supplements to Promote Diversity in Health Related Research Program were invited to a workshop held in Bethesda, Maryland in June, 2015, in order to (1) assess the effectiveness of the current NHLBI diversity program, (2) improve its strategies towards achieving its goal, and (3) provide guidance to assist the transition of diversity supplement recipients to independent NIH grant support. METHODS Workshop participants participated in five independent focus groups to discuss specific topics affecting underrepresented individuals in the biomedical sciences: (1) Socioeconomic barriers to success for diverse research scientists; (2) role of the academic research community in promoting diversity; (3) life beyond a research project grant: non-primary investigator career paths in research; (4) facilitating career development of diverse independent research scientists through NHLBI diversity programs; and (5) effectiveness of current NHLBI programs for promoting diversity of the biomedical workforce. MEASUREMENTS AND MAIN RESULTS Several key issues experienced by young, underrepresented biomedical scientists were identified, and solutions were proposed to improve on training and career development for diverse students, from the high school to postdoctoral trainee level, and address limitations of currently available diversity programs. Although some of the challenges mentioned, such as cost of living, limited parental leave, and insecure extramural funding, are also likely faced by nonminority scientists, these issues are magnified among diversity scientists and are complicated by unique circumstances in this group, such as limited exposure to science at a young age, absence of role models and mentors from underrepresented backgrounds, and social norms that relegate their career endeavors, particularly among women, to being subordinate to their expected cultural role. CONCLUSIONS The factors influencing the participation of underrepresented minorities in the biomedical workforce are complex and span several continuous or overlapping stages in the professional development of scientists from these groups. Therefore, a multipronged approach is needed to enable the professional development and retention of underrepresented minorities in biomedical research. This approach should address both individual and social factors and should involve funding agencies, academic institutions, mentoring teams, professional societies, and peer collaboration. Implementation of some of the recommendations, such as access to child care, institutional support and health benefits for trainees, teaching and entrepreneurial opportunities, grant-writing webinars, and pre-NIH career development (Pre-K) pilot programs would not only benefit biomedical scientists from underrepresented groups but also improve the situation of nondiverse junior scientists. However, other issues, such as opportunities for early exposure to science of disadvantaged/minority groups, and identifying mentors/life coaches/peer mentors who come from similar cultural backgrounds and vantage points, are unique to this group.


Pulmonary circulation | 2013

Human immunodeficiency virus, herpes virus infections, and pulmonary vascular disease

Sonia C. Flores; Sharilyn Almodovar

The following state-of-the-art seminar was delivered as part of the Aspen Lung Conference on Pulmonary Hypertension and Vascular Diseases held in Aspen, Colorado in June 2012. This paper will summarize the lecture and present results from a nonhuman primate model of infection with Simian (Human) Immunodeficiency Virus - nef chimeric virions as well as the idea that polymorphisms in the HIV-1 nef gene may be driving the immune response that results in exuberant inflammation and aberrant endothelial cell (EC) function. We will present data gathered from primary HIV nef isolates where we tested the biological consequences of these polymorphisms and how their presence in human populations may predict patients at risk for developing this disease. In this article, we also discuss how a dysregulated immune system, in conjunction with a viral infection, could contribute to pulmonary arterial hypertension (PAH). Both autoimmune diseases and some viruses are associated with defects in the immune system, primarily in the function of regulatory T cells. These T-cell defects may be a common pathway in the formation of plexiform lesions. Regardless of the route by which viruses may lead to PAH, it is important to recognize their role in this rare disease.


AIDS Research and Human Retroviruses | 2010

Short Communication: Human Blood Dendritic Cells Are Infected Separately from Monocytes in HIV Type 1 Patients

Manuel Vazquez; Irvin M. Maldonado; Sharilyn Almodovar; Carlos López; María del C. Colón; Martin D. Hill; Eric Lorenzo

Monocytes serve as a systemic reservoir of myeloid precursors for the renewal of tissue macrophages and dendritic cells (DCs). Both monocytes and dendritic cells can be infected with HIV-1. Circulating DCs are believed to be derived from a common precursor of monocytes, or, in the case of inflammatory challenge, from monocytes directly. Because there are fewer infected blood monocytes than infected cells after differentiation, we hypothesized that the majority of HIV-1 infection in circulating DCs occurs via direct viral binding to their CD4 and coreceptors after differentiation. We isolated monocytes at one time point and circulating dendritic cells at a second time point from the blood of HIV-1-infected patients. Proviral DNA was isolated from DCs and monocytes, and the C2-V4 region of the HIV-1 env gene was cloned and sequenced. Phylogeny, nucleotide distances, and glycosylation patterns of the env gene were performed. The phylogenetic trees revealed that viral forms from the monocytes clustered distantly from the quasispecies derived from circulating DCs. The nucleotide distances and differing glycosylation patterns suggest that the infection of DCs is independent of the infection of the monocytes.


Viral Immunology | 2017

Lung Vascular Remodeling, Cardiac Hypertrophy, and Inflammatory Cytokines in SHIVnef-Infected Macaques

Sharilyn Almodovar; Jessica Swanson; Luis D. Giavedoni; Sreetharan Kanthaswamy; Carlin S. Long; Norbert F. Voelkel; Michael G. Edwards; Joy M. Folkvord; Elizabeth Connick; Susan V. Westmoreland; Paul A. Luciw; Sonia C. Flores

Fatal pulmonary arterial hypertension (PAH) affects HIV-infected individuals at significantly higher frequencies. We previously showed plexiform-like lesions characterized by recanalized lumenal obliteration, intimal disruption, medial hypertrophy, and thrombosis consistent with PAH in rhesus macaques infected with chimeric SHIVnef but not with the parental SIVmac239, suggesting that Nef is implicated in the pathophysiology of HIV-PAH. However, the current literature on non-human primates as animal models for SIV(HIV)-associated pulmonary disease reports the ultimate pathogenic pulmonary outcomes of the research efforts; however, the variability and features in the actual disease progression remain poorly described, particularly when using different viral sources for infection. We analyzed lung histopathology, performed immunophenotyping of cells in plexogenic lesions pathognomonic of PAH, and measured cardiac hypertrophy biomarkers and cytokine expression in plasma and lung of juvenile SHIVnef-infected macaques. Here, we report significant hematopathologies, changes in cardiac biomarkers consistent with ventricular hypertrophy, significantly increased levels of interleukin-12 and GM-CSF and significantly decreased sCD40 L, CCL-2, and CXCL-1 in plasma of the SHIVnef group. Pathway analysis of inflammatory gene expression predicted activation of NF-κB transcription factor RelB and inhibition of bone morphogenetic protein type-2 in the setting of SHIVnef infection. Our findings highlight the utility of SHIVnef-infected macaques as suitable models of HIV-associated pulmonary vascular remodeling as pathogenetic changes are concordant with features of idiopathic, familial, scleroderma, and HIV-PAH.

Collaboration


Dive into the Sharilyn Almodovar's collaboration.

Top Co-Authors

Avatar

Sonia C. Flores

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Eric Lorenzo

Ponce Health Sciences University

View shared research outputs
Top Co-Authors

Avatar

María del C. Colón

Ponce Health Sciences University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicola Petrosillo

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Norbert F. Voelkel

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Amanda A. Allshouse

Colorado School of Public Health

View shared research outputs
Top Co-Authors

Avatar

Laurence Huang

University of California

View shared research outputs
Top Co-Authors

Avatar

Irvin M. Maldonado

Ponce Health Sciences University

View shared research outputs
Top Co-Authors

Avatar

Martin D. Hill

Ponce Health Sciences University

View shared research outputs
Researchain Logo
Decentralizing Knowledge