Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sonia C. Flores is active.

Publication


Featured researches published by Sonia C. Flores.


Journal of the American College of Cardiology | 2009

Inflammation, Growth Factors, and Pulmonary Vascular Remodeling

Paul M. Hassoun; Luc Mouthon; Joan Albert Barberà; Saadia Eddahibi; Sonia C. Flores; Friedrich Grimminger; Peter Lloyd Jones; Michael L. Maitland; Evangelos D. Michelakis; Nicholas W. Morrell; John H. Newman; Marlene Rabinovitch; Ralph T. Schermuly; Kurt R. Stenmark; Norbert F. Voelkel; Jason X.-J. Yuan; Marc Humbert

Inflammatory processes are prominent in various types of human and experimental pulmonary hypertension (PH) and are increasingly recognized as major pathogenic components of pulmonary vascular remodeling. Macrophages, T and B lymphocytes, and dendritic cells are present in the vascular lesions of PH, whether in idiopathic pulmonary arterial hypertension (PAH) or PAH related to more classical forms of inflammatory syndromes such as connective tissue diseases, human immunodeficiency virus (HIV), or other viral etiologies. Similarly, the presence of circulating chemokines and cytokines, viral protein components (e.g., HIV-1 Nef), and increased expression of growth (such as vascular endothelial growth factor and platelet-derived growth factor) and transcriptional (e.g., nuclear factor of activated T cells or NFAT) factors in these patients are thought to contribute directly to further recruitment of inflammatory cells and proliferation of smooth muscle and endothelial cells. Other processes, such as mitochondrial and ion channel dysregulation, seem to convey a state of cellular resistance to apoptosis; this has recently emerged as a necessary event in the pathogenesis of pulmonary vascular remodeling. Thus, the recognition of complex inflammatory disturbances in the vascular remodeling process offers potential specific targets for therapy and has recently led to clinical trials investigating, for example, the use of tyrosine kinase inhibitors. This paper provides an overview of specific inflammatory pathways involving cells, chemokines and cytokines, cellular dysfunctions, growth factors, and viral proteins, highlighting their potential role in pulmonary vascular remodeling and the possibility of future targeted therapy.


American Journal of Respiratory and Critical Care Medicine | 2013

Comparison of the Respiratory Microbiome in Healthy Nonsmokers and Smokers

Alison Morris; James M. Beck; Patrick D. Schloss; Thomas B. Campbell; Kristina Crothers; Jeffrey L. Curtis; Sonia C. Flores; Andrew P. Fontenot; Elodie Ghedin; Laurence Huang; Kathleen A. Jablonski; Eric C. Kleerup; Susan V. Lynch; Erica Sodergren; Homer L. Twigg; Vincent B. Young; Christine M. Bassis; Arvind Venkataraman; Thomas M. Schmidt; George M. Weinstock

RATIONALE Results from 16S rDNA-encoding gene sequence-based, culture-independent techniques have led to conflicting conclusions about the composition of the lower respiratory tract microbiome. OBJECTIVES To compare the microbiome of the upper and lower respiratory tract in healthy HIV-uninfected nonsmokers and smokers in a multicenter cohort. METHODS Participants were nonsmokers and smokers without significant comorbidities. Oral washes and bronchoscopic alveolar lavages were collected in a standardized manner. Sequence analysis of bacterial 16S rRNA-encoding genes was performed, and the neutral model in community ecology was used to identify bacteria that were the most plausible members of a lung microbiome. MEASUREMENTS AND MAIN RESULTS Sixty-four participants were enrolled. Most bacteria identified in the lung were also in the mouth, but specific bacteria such as Enterobacteriaceae, Haemophilus, Methylobacterium, and Ralstonia species were disproportionally represented in the lungs compared with values predicted by the neutral model. Tropheryma was also in the lung, but not the mouth. Mouth communities differed between nonsmokers and smokers in species such as Porphyromonas, Neisseria, and Gemella, but lung bacterial populations did not. CONCLUSIONS This study is the largest to examine composition of the lower respiratory tract microbiome in healthy individuals and the first to use the neutral model to compare the lung to the mouth. Specific bacteria appear in significantly higher abundance in the lungs than would be expected if they originated from the mouth, demonstrating that the lung microbiome does not derive entirely from the mouth. The mouth microbiome differs in nonsmokers and smokers, but lung communities were not significantly altered by smoking.


Nature | 2014

Muc5b is required for airway defence

Michelle G. Roy; Alessandra Livraghi-Butrico; Ashley A. Fletcher; Melissa M. McElwee; Scott E. Evans; Ryan M. Boerner; Samantha N. Alexander; Lindsey K. Bellinghausen; Alfred S. Song; Youlia Petrova; Michael J. Tuvim; Roberto Adachi; Irlanda Romo; Andrea S. Bordt; M. Gabriela Bowden; Joseph H. Sisson; Prescott G. Woodruff; David J. Thornton; Karine Rousseau; Maria Miguelina De La Garza; Seyed Javad Moghaddam; Harry Karmouty-Quintana; Michael R. Blackburn; Scott M. Drouin; C. William Davis; Kristy A. Terrell; Barbara R. Grubb; Wanda K. O'Neal; Sonia C. Flores; Adela Cota-Gomez

Respiratory surfaces are exposed to billions of particulates and pathogens daily. A protective mucus barrier traps and eliminates them through mucociliary clearance (MCC). However, excessive mucus contributes to transient respiratory infections and to the pathogenesis of numerous respiratory diseases. MUC5AC and MUC5B are evolutionarily conserved genes that encode structurally related mucin glycoproteins, the principal macromolecules in airway mucus. Genetic variants are linked to diverse lung diseases, but specific roles for MUC5AC and MUC5B in MCC, and the lasting effects of their inhibition, are unknown. Here we show that mouse Muc5b (but not Muc5ac) is required for MCC, for controlling infections in the airways and middle ear, and for maintaining immune homeostasis in mouse lungs, whereas Muc5ac is dispensable. Muc5b deficiency caused materials to accumulate in upper and lower airways. This defect led to chronic infection by multiple bacterial species, including Staphylococcus aureus, and to inflammation that failed to resolve normally. Apoptotic macrophages accumulated, phagocytosis was impaired, and interleukin-23 (IL-23) production was reduced in Muc5b−/− mice. By contrast, in mice that transgenically overexpress Muc5b, macrophage functions improved. Existing dogma defines mucous phenotypes in asthma and chronic obstructive pulmonary disease (COPD) as driven by increased MUC5AC, with MUC5B levels either unaffected or increased in expectorated sputum. However, in many patients, MUC5B production at airway surfaces decreases by as much as 90%. By distinguishing a specific role for Muc5b in MCC, and by determining its impact on bacterial infections and inflammation in mice, our results provide a refined framework for designing targeted therapies to control mucin secretion and restore MCC.


Journal of Biological Chemistry | 2005

Mitochondrial H2O2 regulates the angiogenic phenotype Via PTEN oxidation

Kip M. Connor; Sita Subbaram; Kevin Regan; Kristin Nelson; Joseph E. Mazurkiewicz; Peter J. Bartholomew; Andrew E. Aplin; Yu-Tzu Tai; Julio A. Aguirre-Ghiso; Sonia C. Flores; j. Andres Melendez

Recent studies have demonstrated that the tumor suppressor PTEN (phosphatase and tensin homolog deleted from chromosome 10), the antagonist of the phosphosphoinositol-3-kinase (PI3K) signaling cascade, is susceptible to H2O2-dependent oxidative inactivation. This study describes the use of redox-engineered cell lines to identify PTEN as sensitive to oxidative inactivation by mitochondrial H2O2. Increases in the steady state production of mitochondrial derived H2O2, as a result of manganese superoxide dismutase (Sod2) overexpression, led to PTEN oxidation that was reversed by the coexpression of the H2O2-detoxifying enzyme catalase. The accumulation of an oxidized inactive fraction of PTEN favored the formation of phosphatidylinositol 3,4,5-triphosphate at the plasma membrane, resulting in increased activation of Akt and modulation of its downstream targets. PTEN oxidation in response to mitochondrial H2O2 enhanced PI3K signaling, leading to increased expression of the key regulator of angiogenesis, vascular endothelial growth factor. Overexpression of PTEN prevented the H2O2-dependent increase in vascular endothelial growth factor promoter activity and immunoreactive protein, whereas a mutant PTEN (G129R), lacking phosphatase activity, did not. Furthermore, mitochondrial generation of H2O2 by Sod2 promoted endothelial cell sprouting in a three-dimensional in vitro angiogenesis assay that was attenuated by catalase coexpression or the PI3K inhibitor LY2949002. Moreover, Sod2 overexpression resulted in increased in vivo blood vessel formation that was H2O2-dependent as assessed by the chicken chorioallantoic membrane assay. Our findings provide the first evidence for the involvement of mitochondrial H2O2 in regulating PTEN function and the angiogenic switch, indicating that Sod2 can serve as an alternative physiological source of the potent signaling molecule, H2O2.


Circulation Research | 1997

Molecular Mechanisms of Anoxia/Reoxygenation-Induced Neutrophil Adherence to Cultured Endothelial Cells

Hiroshi Ichikawa; Sonia C. Flores; Peter R. Kvietys; Robert E. Wolf; Toshikazu Yoshikawa; D. Neil Granger; Tak Yee Aw

The objectives of this study were to (1) determine the time course of neutrophil adhesion to monolayers of human umbilical vein endothelial cells (HUVECs) that were exposed to 60 minutes of anoxia followed by 30 to 600 minutes of reoxygenation and (2) define the mechanisms responsible for both the early (minutes) and late (hours) hyperadhesivity of postanoxic HUVECs to human neutrophils. The results clearly demonstrate that anoxia/reoxygenation (A/R) leads to a biphasic increase in neutrophil adhesion to HUVECs, with peak responses occurring at 30 minutes (phase 1) and 240 minutes (phase 2) after reoxygenation. Oxypurinol and catalase inhibited phase-1 adhesion, suggesting a role for xanthine oxidase and H2O2. In comparison, platelet activating factor (PAF) contributed to both phases of neutrophil adhesion. Anti-intercellular adhesion molecule-1 (ICAM-1) and anti-P-selectin antibodies (monoclonal antibodies [mAbs]) attenuated phase-1 neutrophil adhesion, consistent with roles for constitutively expressed ICAM-1 and enhanced surface expression of preformed P-selectin. Phase-2 neutrophil adhesion was attenuated by an anti-E-selectin mAb, indicating a dominant role of this adhesion molecule in the late phase response. Pretreatment with actinomycin D and cycloheximide or with competing ds-oligonucleotides containing the nuclear factor-kappa B or activator protein-1 cognate DNA sequences significantly attenuated phase-2 response, suggesting a role for de novo macromolecule synthesis. Surface expression of ICAM-1, P-selectin, and E-selectin on HUVECs correlated with the phase-1 and -2 neutrophil adhesion responses. Collectively, these findings indicate that A/R elicits a two-phase neutrophil-endothelial cell adhesion response that involves transcription-independent and transcription-dependent surface expression of different endothelial cell adhesion molecules.


Cell Host & Microbe | 2013

Alterations in the Gut Microbiota Associated with HIV-1 Infection

Catherine A. Lozupone; Marcella Li; Thomas B. Campbell; Sonia C. Flores; Derek J. Linderman; Matthew J. Gebert; Rob Knight; Andrew P. Fontenot; Brent E. Palmer

Understanding gut microbiota alterations associated with HIV infection and factors that drive these alterations may help explain gut-linked diseases prevalent with HIV. 16S rRNA sequencing of feces from HIV-infected individuals revealed that HIV infection is associated with highly characteristic gut community changes, and antiretroviral therapy does not consistently restore the microbiota to an HIV-negative state. Despite the chronic gut inflammation characteristic of HIV infection, the associated microbiota showed limited similarity with other inflammatory states and instead showed increased, rather than decreased, diversity. Meta-analysis revealed that the microbiota of HIV-infected individuals in the U.S. was most similar to a Prevotella-rich community composition typically observed in healthy individuals in agrarian cultures of Malawi and Venezuela and related to that of U.S. individuals with carbohydrate-rich, protein- and fat-poor diets. By evaluating innate and adaptive immune responses to lysates from bacteria that differ with HIV, we explore the functional drivers of these compositional differences.


Annals of the New York Academy of Sciences | 2003

Oxidative stress in type 1 diabetes.

Kathryn Haskins; Brenda Bradley; Katherine Powers; Valerie Fadok; Sonia C. Flores; Xiaofeng Ling; Subbiah Pugazhenthi; Jane E.B. Reusch; Jennifer A. Kench

Abstract: We have been investigating the effects of preventing oxidative stress on pathogenesis and complications of type 1 diabetes in the NOD mouse model. Our studies have shown that damage caused by oxidative stress is higher in islets and vascular tissue of NOD mice than in nonautoimmune controls or a diabetes‐resistant NOD mouse. In addition, phagocytic function and cytokine production by macrophages are aberrant in the NOD. We have demonstrated that treatment of prediabetic NOD mice for 2 weeks with a metalloporphyrin superoxide dismutase (SOD) mimetic results in marked reduction of oxidative stress in islets and vascular tissue and a reversal of macrophage defects.


American Journal of Respiratory and Critical Care Medicine | 2013

Widespread colonization of the lung by Tropheryma whipplei in HIV infection

Catherine A. Lozupone; Adela Cota-Gomez; Brent E. Palmer; Derek J. Linderman; Emily S. Charlson; Erica Sodergren; Makedonka Mitreva; Sahar Abubucker; John Martin; Guohui Yao; Thomas B. Campbell; Sonia C. Flores; Gail Ackerman; Jesse Stombaugh; Luke K. Ursell; James M. Beck; Jeffrey L. Curtis; Vincent B. Young; Susan V. Lynchv; Laurence Huang; George M. Weinstock; Kenneth S. Knox; Homer L. Twigg; Alison Morris; Elodie Ghedin; Frederic D. Bushman; Ronald G. Collman; Rob Knight; Andrew P. Fontenot

RATIONALE Lung infections caused by opportunistic or virulent pathogens are a principal cause of morbidity and mortality in HIV infection. It is unknown whether HIV infection leads to changes in basal lung microflora, which may contribute to chronic pulmonary complications that increasingly are being recognized in individuals infected with HIV. OBJECTIVES To determine whether the immunodeficiency associated with HIV infection resulted in alteration of the lung microbiota. METHODS We used 16S ribosomal RNA targeted pyrosequencing and shotgun metagenomic sequencing to analyze bacterial gene sequences in bronchoalveolar lavage (BAL) and mouths of 82 HIV-positive and 77 HIV-negative subjects. MEASUREMENTS AND MAIN RESULTS Sequences representing Tropheryma whipplei, the etiologic agent of Whipples disease, were significantly more frequent in BAL of HIV-positive compared with HIV-negative individuals. T. whipplei dominated the community (>50% of sequence reads) in 11 HIV-positive subjects, but only 1 HIV-negative individual (13.4 versus 1.3%; P = 0.0018). In 30 HIV-positive individuals sampled longitudinally, antiretroviral therapy resulted in a significantly reduced relative abundance of T. whipplei in the lung. Shotgun metagenomic sequencing was performed on eight BAL samples dominated by T. whipplei 16S ribosomal RNA. Whole genome assembly of pooled reads showed that uncultured lung-derived T. whipplei had similar gene content to two isolates obtained from subjects with Whipples disease. CONCLUSIONS Asymptomatic subjects with HIV infection have unexpected colonization of the lung by T. whipplei, which is reduced by effective antiretroviral therapy and merits further study for a potential pathogenic role in chronic pulmonary complications of HIV infection.


Journal of Clinical Investigation | 1995

Mitochondrial respiration scavenges extramitochondrial superoxide anion via a nonenzymatic mechanism.

David M. Guidot; John E. Repine; Andrew D. Kitlowski; Sonia C. Flores; Sally K. Nelson; Richard M. Wright; Joe M. McCord

We determined that mitochondrial respiration reduced cytosolic oxidant stress in vivo and scavenged extramitochondrial superoxide anion (O2-.) in vitro. First, Saccharomyces cerevisiae deficient in both the cytosolic antioxidant cupro-zinc superoxide dismutase (Cu,Zn-SOD) and electron transport (Rho0 state) grew poorly (P < 0.05) in 21% O2 compared with parent yeast and yeast deficient only in electron transport or Cu,Zn-SOD, whereas anaerobic growth was the same (P > 0.05) in all yeast. Second, isolated yeast and mammalian mitochondria scavenged extramitochondrial O2-. generated by xanthine/xanthine oxidase. Yeast mitochondria scavenged 42% more (P < 0.05) extramitochondrial O2-. during pyruvate/malate-induced respiration than in the resting state. Addition of either antimycin (respiratory chain inhibitor) or FCCP (respiratory chain uncoupler) prevented increased O2-. scavenging. Mitochondria isolated from yeast deficient in the mitochondrial manganous superoxide dismutase (Mn-SOD) increased (P < 0.05) O2-. scavenging 56% during respiration. This apparent SOD activity, expressed in units of SOD activity per milligram of mitochondrial protein, was the same (9 +/- 0.6 vs. 10 +/- 1.0; P = 0.43) as the O2-. scavenging of mitochondria with Mn-SOD, suggesting that respiration-dependent mitochondrial O2-. scavenging was nonenzymatic. Finally, isolated rat liver and lung mitochondria also increased (P < 0.05) O2-. scavenging during respiration. We speculate that respiring mitochondria, via the protonmotive pump, present a polarized, proton-rich surface that enhances nonenzymatic dismutation of extramitochondrial O2-. and that this is a previously unrecognized function of mitochondrial respiration with potential physiological ramifications.


Thorax | 2008

HIV associated pulmonary emphysema: a review of the literature and inquiry into its mechanism

Irina Petrache; Khalil Diab; Kenneth S. Knox; Homer L. Twigg; R. S. Stephens; Sonia C. Flores; Rubin M. Tuder

Chronic lung diseases are increasingly recognised complications of the human immunodeficiency virus (HIV) infection and acquired immune deficiency syndrome (AIDS). Of these, pulmonary emphysema, characterised by permanent destruction of the lung parenchyma distal to the terminal bronchioles accompanied by various degrees of inflammation, is emerging as a distinct source of morbidity for patients infected with HIV. Similarly, HIV is now frequently cited as a susceptibility factor for the development of emphysema, independent of cigarette smoking status. The presence of common coexistent confounding factors that may predispose patients to chronic lung injury such as drugs, opportunistic infections and malnutrition, limits the scope of studies of direct mechanisms involved in HIV associated emphysematous lung disease. We review the clinical studies supporting a direct association between HIV infection and emphysema. Recent developments in the basic understanding of HIV infection and emphysema are also reviewed, since they may aid in understanding the pathobiology of HIV associated emphysema. The authors emphasise how HIV infection may affect cytotoxic lymphocyte activation, lung capillary endothelial cell injury and apoptosis, sphingolipid imbalance and oxidative stress in the lung. A better understanding of the pathogenesis of HIV associated pulmonary emphysema may provide clues and therapeutic targets that have broader application in this disease, including cigarette smoke induced emphysema.

Collaboration


Dive into the Sonia C. Flores's collaboration.

Top Co-Authors

Avatar

Joe M. McCord

University of South Alabama

View shared research outputs
Top Co-Authors

Avatar

Sharilyn Almodovar

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bifeng Gao

Anschutz Medical Campus

View shared research outputs
Top Co-Authors

Avatar

Kathryn Haskins

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Laurence Huang

University of California

View shared research outputs
Top Co-Authors

Avatar

Norbert F. Voelkel

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Rubin M. Tuder

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Andrew P. Fontenot

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Alison Morris

University of Pittsburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge