Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sharna J. Rich is active.

Publication


Featured researches published by Sharna J. Rich.


Journal of Medicinal Chemistry | 2010

Discovery of (2,4-Dihydroxy-5-isopropylphenyl)-[5-(4-methylpiperazin-1-ylmethyl)-1,3-dihydroisoindol-2-yl]methanone (AT13387), a Novel Inhibitor of the Molecular Chaperone Hsp90 by Fragment Based Drug Design

Andrew James Woodhead; Hayley Angove; Maria Grazia Carr; Gianni Chessari; Miles Congreve; Joseph E. Coyle; Jose Cosme; Brent Graham; Philip J. Day; Robert Downham; Lynsey Fazal; Ruth Feltell; Eva Figueroa; Martyn Frederickson; Jonathan Lewis; Rachel McMenamin; Christopher W. Murray; M. Alistair O’Brien; Lina Parra; Sahil Patel; Theresa Rachel Phillips; David C. Rees; Sharna J. Rich; Donna-Michelle Smith; Gary Trewartha; Mladen Vinkovic; Brian Williams; Alison Jo-Anne Woolford

Inhibitors of the molecular chaperone heat shock protein 90 (Hsp90) are currently generating significant interest in clinical development as potential treatments for cancer. In a preceding publication (DOI: 10.1021/jm100059d ) we describe Astexs approach to screening fragments against Hsp90 and the subsequent optimization of two hits into leads with inhibitory activities in the low nanomolar range. This paper describes the structure guided optimization of the 2,4-dihydroxybenzamide lead molecule 1 and details some of the drug discovery strategies employed in the identification of AT13387 (35), which has progressed through preclinical development and is currently being tested in man.


Nature Chemical Biology | 2012

Discovery of an Allosteric Mechanism for the Regulation of Hcv Ns3 Protein Function.

Susanne Maria Saalau-Bethell; Andrew James Woodhead; Gianni Chessari; Maria Grazia Carr; Joseph T. Coyle; Brent Graham; Steven Douglas Hiscock; Christopher W. Murray; Puja Pathuri; Sharna J. Rich; Caroline Richardson; Pamela A. Williams; Harren Jhoti

Here we report the discovery of a highly conserved novel binding site located at the interface between the protease and helicase domains of the Hepatitis C Virus (HCV) NS3 protein. Using a chemical lead, identified by fragment screening and structure-guided design, we demonstrate that this site has a regulatory function on the protease activity via an allosteric mechanism. We propose that compounds binding at this allosteric site inhibit the function of the NS3 protein by stabilising an inactive conformation and thus represent a new class of direct acting antiviral agents.


Journal of Medicinal Chemistry | 2015

Fragment-Based Drug Discovery Targeting Inhibitor of Apoptosis Proteins: Discovery of a Non-Alanine Lead Series with Dual Activity Against cIAP1 and XIAP.

Gianni Chessari; Ildiko Maria Buck; James E. H. Day; Philip J. Day; Aman Iqbal; Christopher Norbert Johnson; Edward J. Lewis; Vanessa Martins; Darcey Miller; Michael Reader; David C. Rees; Sharna J. Rich; Emiliano Tamanini; Marc Vitorino; George Ward; Pamela A. Williams; Glyn Williams; Nicola E. Wilsher; Alison Jo-Anne Woolford

Inhibitor of apoptosis proteins (IAPs) are important regulators of apoptosis and pro-survival signaling pathways whose deregulation is often associated with tumor genesis and tumor growth. IAPs have been proposed as targets for anticancer therapy, and a number of peptidomimetic IAP antagonists have entered clinical trials. Using our fragment-based screening approach, we identified nonpeptidic fragments binding with millimolar affinities to both cellular inhibitor of apoptosis protein 1 (cIAP1) and X-linked inhibitor of apoptosis protein (XIAP). Structure-based hit optimization together with an analysis of protein-ligand electrostatic potential complementarity allowed us to significantly increase binding affinity of the starting hits. Subsequent optimization gave a potent nonalanine IAP antagonist structurally distinct from all IAP antagonists previously reported. The lead compound had activity in cell-based assays and in a mouse xenograft efficacy model and represents a highly promising start point for further optimization.


ChemMedChem | 2014

Crystal structure of human soluble adenylate cyclase reveals a distinct, highly flexible allosteric bicarbonate binding pocket.

Susanne Maria Saalau-Bethell; Valerio Berdini; Anne Cleasby; Miles Stuart Congreve; Joseph E. Coyle; Victoria Lock; Christopher W. Murray; M Alistair O'Brien; Sharna J. Rich; Tracey Sambrook; Mladen Vinkovic; Jeff Yon; Harren Jhoti

Soluble adenylate cyclases catalyse the synthesis of the second messenger cAMP through the cyclisation of ATP and are the only known enzymes to be directly activated by bicarbonate. Here, we report the first crystal structure of the human enzyme that reveals a pseudosymmetrical arrangement of two catalytic domains to produce a single competent active site and a novel discrete bicarbonate binding pocket. Crystal structures of the apo protein, the protein in complex with α,β‐methylene adenosine 5′‐triphosphate (AMPCPP) and calcium, with the allosteric activator bicarbonate, and also with a number of inhibitors identified using fragment screening, all show a flexible active site that undergoes significant conformational changes on binding of ligands. The resulting nanomolar‐potent inhibitors that were developed bind at both the substrate binding pocket and the allosteric site, and can be used as chemical probes to further elucidate the function of this protein.


Molecular Cancer Therapeutics | 2011

Potent, Selective Inhibitors of Fibroblast Growth Factor Receptor Define Fibroblast Growth Factor Dependence in Preclinical Cancer Models

Matthew Squires; George Ward; Gordan Saxty; Valerio Berdini; Anne Cleasby; Peter King; Patrick René Angibaud; Tim Perera; Lynsey Fazal; Douglas D. Ross; Charlotte Griffiths Jones; Andrew Madin; Rajdeep Kaur Benning; Emma Vickerstaffe; Alistair O'Brien; Martyn Frederickson; Michael Reader; Christopher Charles Frederick Hamlett; Michael A. Batey; Sharna J. Rich; Maria Grazia Carr; Darcey Miller; Ruth Feltell; Abarna Thiru; Susanne S. Bethell; Lindsay A. Devine; Brent Graham; Andrew Pike; Jose Cosme; Edward J. Lewis

We describe here the identification and characterization of 2 novel inhibitors of the fibroblast growth factor receptor (FGFR) family of receptor tyrosine kinases. The compounds exhibit selective inhibition of FGFR over the closely related VEGFR2 receptor in cell lines and in vivo. The pharmacologic profile of these inhibitors was defined using a panel of human tumor cell lines characterized for specific mutations, amplifications, or translocations known to activate one of the four FGFR receptor isoforms. This pharmacology defines a profile for inhibitors that are likely to be of use in clinical settings in disease types where FGFR is shown to play an important role. Mol Cancer Ther; 10(9); 1542–52. ©2011 AACR.


Journal of Medicinal Chemistry | 2016

Exploitation of a Novel Binding Pocket in Human Lipoprotein-Associated Phospholipase A2 (Lp-PLA2) Discovered through X-ray Fragment Screening.

Alison Jo-Anne Woolford; Joseph E. Pero; Sridhar Aravapalli; Valerio Berdini; Joseph E. Coyle; Philip J. Day; Andrew M. Dodson; Pascal Grondin; Finn P. Holding; Lydia Y. W. Lee; Peng Li; Eric S. Manas; Joseph P. Marino; Agnes C. L. Martin; Brent W. Mccleland; Rachel McMenamin; Christopher W. Murray; Christopher E. Neipp; Lee W. Page; Vipulkumar Kantibhai Patel; Florent Potvain; Sharna J. Rich; Ralph A. Rivero; Kirsten S. Smith; Donald O. Somers; Lionel Trottet; Ranganadh Velagaleti; Glyn Williams; Ren Xie

Elevated levels of human lipoprotein-associated phospholipase A2 (Lp-PLA2) are associated with cardiovascular disease and dementia. A fragment screen was conducted against Lp-PLA2 in order to identify novel inhibitors. Multiple fragment hits were observed in different regions of the active site, including some hits that bound in a pocket created by movement of a protein side chain (approximately 13 Å from the catalytic residue Ser273). Using structure guided design, we optimized a fragment that bound in this pocket to generate a novel low nanomolar chemotype, which did not interact with the catalytic residues.


Journal of Medicinal Chemistry | 2017

Discovery of a Potent Nonpeptidomimetic, Small-Molecule Antagonist of Cellular Inhibitor of Apoptosis Protein 1 (cIAP1) and X-Linked Inhibitor of Apoptosis Protein (XIAP).

Emiliano Tamanini; Ildiko Maria Buck; Gianni Chessari; Elisabetta Chiarparin; James E. H. Day; Martyn Frederickson; Charlotte Mary Griffiths-Jones; Keisha Hearn; Tom D. Heightman; Aman Iqbal; Christopher N. Johnson; Edward J. Lewis; Vanessa Martins; Torren Peakman; Michael Reader; Sharna J. Rich; George Ward; Pamela A. Williams; Nicola E. Wilsher

XIAP and cIAP1 are members of the inhibitor of apoptosis protein (IAP) family and are key regulators of anti-apoptotic and pro-survival signaling pathways. Overexpression of IAPs occurs in various cancers and has been associated with tumor progression and resistance to treatment. Structure-based drug design (SBDD) guided by structural information from X-ray crystallography, computational studies, and NMR solution conformational analysis was successfully applied to a fragment-derived lead resulting in AT-IAP, a potent, orally bioavailable, dual antagonist of XIAP and cIAP1 and a structurally novel chemical probe for IAP biology.


Cancer Research | 2014

Abstract 4748: Discovery of JNJ-42756493, a potent fibroblast growth factor receptor (FGFR) inhibitor using a fragment based approach

Patrick Angibaud; Laurence Anne Mevellec; Gordon Saxty; Christophe Adelinet; Rhalid Akkari; Valerio Berdini; Pascal Bonnet; Marine Bourgeois; Xavier Bourdrez; Anne Cleasby; Hélène Colombel; Imre Csoka; Werner Constant Johan Embrechts; Eddy Jean Edgard Freyne; Ronaldus Arnodus Hendrika Joseph Gilissen; Eleonora Jovcheva; Peter King; Jean Fernand Armand Lacrampe; Delphine Yvonne Raymonde Lardeau; Yannick Ligny; Steve Mcclue; Lieven Meerpoel; David R. Newell; Martin Page; Alexandra Papanikos; Elisabeth Pasquier; Isabelle Pilatte; Virginie Poncelet; Olivier Querolle; David C. Rees

Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA Fibroblast growth factors (FGFs) and their receptors (FGFR1 through 4) regulate a variety of key cellular processes, including proliferation, migration, survival, and differentiationa. Aberrant activation of FGF/FGFR is strongly implicated in oncogenic signalling in many tumor types. This has stimulated the development of a number of FGFR inhibitors, with diverse kinase inhibition and pharmacological profiles that are currently being evaluated in clinical studies. We conducted a fragment screening campaign and this resulted in identification of a 6-aminoquinoxalinyl fragment with a binding affinity in the micromolar range. Structure-guided medicinal chemistry led to the identification of a novel quinoxaline-based chemical series with nanomolar affinity for FGFR1, 2, 3, and 4, activity in cells, and selectivity with respect to VEGFR-2. Further optimisation resulted in the generation of JNJ-42756493, a compound with favourable drug-like properties that demonstrated strong anti-tumoral activity in a FGFR2-dependent SNU-16 human gastric carcinoma xenograft model. This report represents the first disclosure of the structure-activity relationships as well as the chemical synthesis pathway of the JNJ-42756493 series and illustrates how a fragment-based drug discovery approach has been efficiently used to discover FGFR1-4 inhibitors with nanomolar affinity. aTurner, N. and Grose, R. Nat. Rev. Cancer, 2010, 10, 116-129. Citation Format: Patrick R. Angibaud, Laurence Mevellec, Gordon Saxty, Christophe Adelinet, Rhalid Akkari, Valerio Berdini, Pascal Bonnet, Marine Bourgeois, Xavier Bourdrez, Anne Cleasby, Helene Colombel, Imre Csoka, Werner Embrechts, Eddy Freyne, Ronaldus Gilissen, Eleonora Jovcheva, Peter King, Jean Lacrampe, Delphine Lardeau, Yannick Ligny, Steve Mcclue, Lieven Meerpoel, David R. Newell, Martin Page, Alexandra Papanikos, Elisabeth Pasquier, Isabelle Pilatte, Virginie Poncelet, Olivier Querolle, David C. Rees, Sharna Rich, Bruno Roux, Elodie Sement, Yvan Simonnet, Matthew Squires, Virginie Tronel, Tinne Verhulst, Jorge Vialard, Marc Willems, Steven J. Woodhead, Berthold Wroblowski, Christopher W. Murray, Timothy Perera. Discovery of JNJ-42756493, a potent fibroblast growth factor receptor (FGFR) inhibitor using a fragment based approach. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 4748. doi:10.1158/1538-7445.AM2014-4748


Molecular Cancer Therapeutics | 2018

ASTX660, a Novel Non-peptidomimetic Antagonist of cIAP1/2 and XIAP, Potently Induces TNFα-Dependent Apoptosis in Cancer Cell Lines and Inhibits Tumor Growth

George Ward; Edward J. Lewis; Jong Sook Ahn; Christopher N. Johnson; John Lyons; Vanessa Martins; Joanne M. Munck; Sharna J. Rich; Tomoko Smyth; Neil Thompson; Pamela A. Williams; Nicola E. Wilsher; Nicola G. Wallis; Gianni Chessari

Because of their roles in the evasion of apoptosis, inhibitor of apoptosis proteins (IAP) are considered attractive targets for anticancer therapy. Antagonists of these proteins have the potential to switch prosurvival signaling pathways in cancer cells toward cell death. Various SMAC-peptidomimetics with inherent cIAP selectivity have been tested clinically and demonstrated minimal single-agent efficacy. ASTX660 is a potent, non-peptidomimetic antagonist of cIAP1/2 and XIAP, discovered using fragment-based drug design. The antagonism of XIAP and cIAP1 by ASTX660 was demonstrated on purified proteins, cells, and in vivo in xenograft models. The compound binds to the isolated BIR3 domains of both XIAP and cIAP1 with nanomolar potencies. In cells and xenograft tissue, direct antagonism of XIAP was demonstrated by measuring its displacement from caspase-9 or SMAC. Compound-induced proteasomal degradation of cIAP1 and 2, resulting in downstream effects of NIK stabilization and activation of noncanonical NF-κB signaling, demonstrated cIAP1/2 antagonism. Treatment with ASTX660 led to TNFα-dependent induction of apoptosis in various cancer cell lines in vitro, whereas dosing in mice bearing breast and melanoma tumor xenografts inhibited tumor growth. ASTX660 is currently being tested in a phase I–II clinical trial (NCT02503423), and we propose that its antagonism of cIAP1/2 and XIAP may offer improved efficacy over first-generation antagonists that are more cIAP1/2 selective. Mol Cancer Ther; 17(7); 1381–91. ©2018 AACR.


Journal of Medicinal Chemistry | 2018

Fragment-Based Discovery of a Potent, Orally Bioavailable Inhibitor That Modulates the Phosphorylation and Catalytic Activity of ERK1/2.

Tom D. Heightman; Valerio Berdini; Hannah Braithwaite; Ildiko Maria Buck; Megan Cassidy; Juan Castro; Aurélie Courtin; James E. H. Day; Charlotte East; Lynsey Fazal; Brent Graham; Charlotte Mary Griffiths-Jones; John Lyons; Vanessa Martins; Sandra Muench; Joanne M. Munck; David Norton; Marc O’Reilly; Nick Palmer; Puja Pathuri; Michael Reader; David C. Rees; Sharna J. Rich; Caroline Richardson; Harpreet K. Saini; Neil Thompson; Nicola G. Wallis; Hugh Walton; Nicola E. Wilsher; Alison Jo-Anne Woolford

Aberrant activation of the MAPK pathway drives cell proliferation in multiple cancers. Inhibitors of BRAF and MEK kinases are approved for the treatment of BRAF mutant melanoma, but resistance frequently emerges, often mediated by increased signaling through ERK1/2. Here, we describe the fragment-based generation of ERK1/2 inhibitors that block catalytic phosphorylation of downstream substrates such as RSK but also modulate phosphorylation of ERK1/2 by MEK without directly inhibiting MEK. X-ray crystallographic and biophysical fragment screening followed by structure-guided optimization and growth from the hinge into a pocket proximal to the C-α helix afforded highly potent ERK1/2 inhibitors with excellent kinome selectivity. In BRAF mutant cells, the lead compound suppresses pRSK and pERK levels and inhibits proliferation at low nanomolar concentrations. The lead exhibits tumor regression upon oral dosing in BRAF mutant xenograft models, providing a promising basis for further optimization toward clinical pERK1/2 modulating ERK1/2 inhibitors.

Researchain Logo
Decentralizing Knowledge