Shashank C. Deshmukh
Applied Materials
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shashank C. Deshmukh.
Advances in Resist Technology and Processing XX | 2003
Tito Chowdhury; Hanna Bamnolker; Roni Khen; Chan-Lon Yang; Hean-Cheal Lee; Yan Du; Meihua Shen; Jinhan Choi; Shashank C. Deshmukh
193nm lithography has become increasingly important as the critical dimensions of semiconductor devices continue to scale down towards sub 0.10um dimension. From dry etching perspective, however, 193nm resist brings new challenges due to its poorer plasma etch resistance, line edge roughness and lower thickness compared to 248nm DUV resist. Consequently, issues such as line edge roughness and poor profile control were observed after dry etch processing. This paper presents a successful development of advanced 0.1 μm metal gate application using 193nm lithography on Applied Materials’ decoupled plasma etcher DPSII system. The integrated process involves a hard mask open with ex-situ resist strip followed by metal/poly dual gate etching. Process chemistry and process parameters for nitride mask step were thoroughly explored and investigated. With CF4/CHF3 based chemistry, the process achieved a greater then 2:1 selectivity with straight nitride profile and smooth sidewall. Less than 7nm 3-sigma of CD bias uniformity was obtained across the wafer with edge exclusion up to 4mm on a 200mm substrate. Process parameters such as pressure, gas ratio and the total Fluorine-contained flow were proven to be the most influential on resist selectivity, profile and CD control. A careful balance needs to be maintained in order to deliver an overall process. The following W/WN/poly gate etch features a three-step approach that has produced straight profiles, excellent CD control and excellent gate oxide integrity. Post-etch measurement of line edge roughness shows an average of 5nm LER. It was observed LER is a strong function of etch chemistry, reaction regime, etc. A detailed study showing methods to reduce LER is presented in this paper.
Archive | 2004
Jinhan Choi; Shashank C. Deshmukh; Sang Yi; Kyeong-Tae Lee
Archive | 2007
Tae Won Kim; Kyeong-Tae Lee; Alexander Paterson; Valentin N. Todorov; Shashank C. Deshmukh
Archive | 1997
Ralph M. Wadensweiler; Ajay Kumar; Shashank C. Deshmukh; Weinan Jiang; Rolf A. Guenther
Archive | 1999
Shashank C. Deshmukh; Jeffrey D. Chinn
Archive | 1998
Ajay Kumar; Jeffrey D. Chinn; Shashank C. Deshmukh; Weinan Jiang; Brian Duda; Rolf A. Guenther; Bruce Minaee; Marco Mombelli; Mark Wiltse
Archive | 2002
Shashank C. Deshmukh; Thorsten Lill
Archive | 1996
Ajay Kumar; Jeffrey D. Chinn; Shashank C. Deshmukh; Weinan Jiang; Rolf A. Guenther; Bruce Minaee; Mark Wiltse
Archive | 2003
David Mui; Wei Liu; Shashank C. Deshmukh; Hiroki Sasano
Archive | 2007
Tae Won Kim; Kyeong-Tae Lee; Alexander Paterson; Valentin N. Todorow; Shashank C. Deshmukh