Shashi Kant Tiwari
Indian Institute of Toxicology Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shashi Kant Tiwari.
ACS Nano | 2014
Shashi Kant Tiwari; Swati Agarwal; Brashket Seth; Anuradha Yadav; Saumya Nair; Priyanka Bhatnagar; Madhumita Karmakar; Manisha Kumari; L.K.S. Chauhan; Devendra Kumar Patel; Vikas Srivastava; Dhirendra Singh; Shailendra K. Gupta; Anurag Tripathi; Rajnish Kumar Chaturvedi; Kailash C. Gupta
Neurogenesis, a process of generation of new neurons, is reported to be reduced in several neurodegenerative disorders including Alzheimers disease (AD). Induction of neurogenesis by targeting endogenous neural stem cells (NSC) could be a promising therapeutic approach to such diseases by influencing the brain self-regenerative capacity. Curcumin, a neuroprotective agent, has poor brain bioavailability. Herein, we report that curcumin-encapsulated PLGA nanoparticles (Cur-PLGA-NPs) potently induce NSC proliferation and neuronal differentiation in vitro and in the hippocampus and subventricular zone of adult rats, as compared to uncoated bulk curcumin. Cur-PLGA-NPs induce neurogenesis by internalization into the hippocampal NSC. Cur-PLGA-NPs significantly increase expression of genes involved in cell proliferation (reelin, nestin, and Pax6) and neuronal differentiation (neurogenin, neuroD1, neuregulin, neuroligin, and Stat3). Curcumin nanoparticles increase neuronal differentiation by activating the Wnt/β-catenin pathway, involved in regulation of neurogenesis. These nanoparticles caused enhanced nuclear translocation of β-catenin, decreased GSK-3β levels, and increased promoter activity of the TCF/LEF and cyclin-D1. Pharmacological and siRNA-mediated genetic inhibition of the Wnt pathway blocked neurogenesis-stimulating effects of curcumin. These nanoparticles reverse learning and memory impairments in an amyloid beta induced rat model of AD-like phenotypes, by inducing neurogenesis. In silico molecular docking studies suggest that curcumin interacts with Wif-1, Dkk, and GSK-3β. These results suggest that curcumin nanoparticles induce adult neurogenesis through activation of the canonical Wnt/β-catenin pathway and may offer a therapeutic approach to treating neurodegenerative diseases such as AD, by enhancing a brain self-repair mechanism.
Journal of Biological Chemistry | 2015
Swati Agarwal; Shashi Kant Tiwari; Brashket Seth; Anuradha Yadav; Anshuman Singh; Anubha Mudawal; L.K.S. Chauhan; Shailendra K. Gupta; Vinay Choubey; Anurag Tripathi; Amit Kumar; Ratan Singh Ray; Shubha Shukla; Devendra Parmar; Rajnish Kumar Chaturvedi
Background: The effects of xenoestrogen bisphenol-A on autophagy, and association with oxidative stress and apoptosis are still elusive. Results: Transient activation of autophagy protects against bisphenol-A-induced neurodegeneration via AMPK activation and mTOR down-regulation. Conclusion: Autophagy induction against bisphenol-A is an early cells tolerance response. Significance: Autophagy provides an imperative biological marker for evaluation of neurotoxicity by xenoestrogen. The human health hazards related to persisting use of bisphenol-A (BPA) are well documented. BPA-induced neurotoxicity occurs with the generation of oxidative stress, neurodegeneration, and cognitive dysfunctions. However, the cellular and molecular mechanism(s) of the effects of BPA on autophagy and association with oxidative stress and apoptosis are still elusive. We observed that BPA exposure during the early postnatal period enhanced the expression and the levels of autophagy genes/proteins. BPA treatment in the presence of bafilomycin A1 increased the levels of LC3-II and SQSTM1 and also potentiated GFP-LC3 puncta index in GFP-LC3-transfected hippocampal neural stem cell-derived neurons. BPA-induced generation of reactive oxygen species and apoptosis were mitigated by a pharmacological activator of autophagy (rapamycin). Pharmacological (wortmannin and bafilomycin A1) and genetic (beclin siRNA) inhibition of autophagy aggravated BPA neurotoxicity. Activation of autophagy against BPA resulted in intracellular energy sensor AMP kinase (AMPK) activation, increased phosphorylation of raptor and acetyl-CoA carboxylase, and decreased phosphorylation of ULK1 (Ser-757), and silencing of AMPK exacerbated BPA neurotoxicity. Conversely, BPA exposure down-regulated the mammalian target of rapamycin (mTOR) pathway by phosphorylation of raptor as a transient cells compensatory mechanism to preserve cellular energy pool. Moreover, silencing of mTOR enhanced autophagy, which further alleviated BPA-induced reactive oxygen species generation and apoptosis. BPA-mediated neurotoxicity also resulted in mitochondrial loss, bioenergetic deficits, and increased PARKIN mitochondrial translocation, suggesting enhanced mitophagy. These results suggest implication of autophagy against BPA-mediated neurodegeneration through involvement of AMPK and mTOR pathways. Hence, autophagy, which arbitrates cell survival and demise during stress conditions, requires further assessment to be established as a biomarker of xenoestrogen exposure.
Human Molecular Genetics | 2012
Rajnish Kumar Chaturvedi; Thomas Hennessey; Ashu Johri; Shashi Kant Tiwari; Divya Mishra; Swati Agarwal; Yoon-Seong Kim; M. Flint Beal
Huntingtons disease (HD) is an incurable neurological disorder caused by an abnormal glutamine repeat expansion in the huntingtin (Htt) protein. In the present studies, we investigated the role of Transducers of Regulated cAMP response element-binding (CREB) protein activity (TORCs) in HD, since TORCs play an important role in the expression of the transcriptional co-regulator peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), whose expression is impaired in HD. We found significantly decreased TORC1 expression levels in STHdhQ111 cells expressing mutant Htt, in the striatum of NLS-N171-82Q, R6/2 and HdhQ111 HD transgenic mice and in postmortem striatal tissue from HD patients. TORC1 overexpression in wild-type (WT) and Htt striatal cells increased CREB mRNA and protein levels, PGC-1α promoter activity, mRNA expression of the PGC-1α, NRF-1, Tfam and CytC genes, mitochondrial DNA content, mitochondrial activity and mitochondrial membrane potential. TORC1 overexpression also increased the resistance of striatal cells to 3-nitropropionic (3-NP) acid-mediated toxicity. In cultured WT and mutant Htt striatal cells, small hairpin RNA-mediated TORC1 knockdown resulted in decreased PGC-1α expression and increased susceptibility to 3-NP-induced toxicity. Overexpression of PGC-1α partially prevented TORC1 knockdown-mediated increased susceptibility of Htt striatal cells to 3-NP. Specific knockdown of TORC1 in the striatum of NLS-N171-82Q HD transgenic mice induced neurodegeneration. Lastly, knockdown of Htt prevents transcriptional repression of TORC1 and CREB in Htt striatal cells. These findings show that impaired expression and function of TORC1, which results in a reduction in PGC-1α, plays an important role in mitochondrial dysfunction in HD.
Molecular Neurobiology | 2015
Shashi Kant Tiwari; Swati Agarwal; L.K.S. Chauhan; Vijay Nath Mishra; Rajnish Kumar Chaturvedi
Myelin is the functional implication of oligodendrocytes (OLs), which is involved in insulation of axons and promoting rapid propagation of action potential in the brain. OLs are derived from oligodendrocyte progenitor cells (OPCs), which proliferate, differentiate, and migrate throughout the central nervous system. Defects in myelination process lead to the onset of several neurological and neurodegenerative disorders. Exposure to synthetic xenoestrogen bisphenol-A (BPA) causes cognitive dysfunction, impairs hippocampal neurogenesis, and causes onset of neurodevelopmental disorders. However, the effects of BPA on OPC proliferation, differentiation and myelination, and associated cellular and molecular mechanism(s) in the hippocampus of the rat brain are still largely unknown. We found that BPA significantly decreased bromodeoxyuridine (BrdU)-positive cell proliferation and number and size of oligospheres. We observed reduced co-localization of BrdU with myelination markers CNPase and platelet-derived growth factor receptor-α (PDGFR-α), suggesting impaired proliferation and differentiation of OPCs by BPA in culture. We studied the effects of BPA exposure during prenatal and postnatal periods on cellular and molecular alteration(s) in the myelination process in the hippocampus region of the rat brain at postnatal day 21 and 90. BPA exposure both in vitro and in vivo altered proliferation and differentiation potential of OPCs and decreased the expression of genes and levels of proteins that are involved in myelination. Ultrastructural electron microscopy analysis revealed that BPA exposure caused decompaction of myelinated axons and altered g-ratio at both the developmental periods as compared to control. These results suggest that BPA exposure both during prenatal and postnatal periods alters myelination in the hippocampus of the rat brain leading to cognitive deficits.
Toxicological Sciences | 2012
Divya Mishra; Shashi Kant Tiwari; Swati Agarwal; Vinod P. Sharma; Rajnish Kumar Chaturvedi
Neurogenesis is a process of generation of new neurons in the hippocampus and associated with learning and memory. Carbofuran, a carbamate pesticide, elicits several neurochemical, neurophysiological, and neurobehavioral deficits. We evaluated whether chronic prenatal oral exposure of carbofuran during gestational days 7-21 alters postnatal hippocampal neurogenesis at postnatal day 21. We found carbofuran treatment significantly decreased bromodeoxyuridine (BrdU) positive cell proliferation and long-term survival in the hippocampus only but not in the cerebellum. We observed a reduced number of transcription factor SOX-2 and glial fibrillary acidic protein (GFAP) colabeled cells, decreased nestin messenger RNA (mRNA) expression, and decreased histone-H3 phosphorylation following carbofuran treatment, suggesting a decreased pool of neural progenitor cells (NPC). Colocalization of BrdU with doublecortin (DCX), neuronal nuclei (NeuN), and GFAP suggested decreased neuronal differentiation and increased glial differentiation by carbofuran. The number of DCX(+) and NeuN(+) neurons, NeuN protein levels, and fibers length of DCX(+) neurons were decreased by carbofuran. Carbofuran caused a significant downregulation of mRNA expression of the neurogenic genes/transcription factors such as neuregulin, neurogenin, and neuroD1 and upregulation of the gliogenic gene Stat3. Carbofuran exposure led to increased BrdU/caspase 3 colabeled cells, an increased number of degenerative neurons and profound deficits in learning and memory processes. The number and size of primary neurospheres derived from the hippocampus of carbofuran-treated rats were decreased. These results suggest that early gestational carbofuran exposure diminishes neurogenesis, reduces the NPC pool, produces neurodegeneration in the hippocampus, and causes cognitive impairments in rat offspring.
Journal of Natural Medicines | 2014
Sunil Kumar Mishra; Shashi Kant Tiwari; Atul Shrivastava; Shishir Srivastava; Goutam K. Boudh; Shivendra K. Chourasia; Upma Chaturvedi; Snober S. Mir; Anil K. Saxena; Gitika Bhatia; Vijai Lakshmi
The aim of the present study was to evaluate the antidyslipidemic effect of ethanolic extract of Rheum emodi rhizomes and its constituents in Triton-WR-1339 and high-fat diet (HFD)-induced dyslipidemic rats. In preliminary screening, the ethanolic extract showed significant activity in Triton-treated rats. Bioassay-guided fractionation of the ethanolic extract resulted in the identification of four anthraquinone derivatives, viz. chrysophanol, emodin, chrysophanol 8-O-β-d-glucopyranoside and emodin 8-O-β-d-glucopyranoside as active constituents. All these compounds significantly reduced plasma lipid levels. The most active compound emodin showed significant lipid-lowering activity in the HFD-fed model. In addition, these compounds showed significant antioxidant activity. The effect of emodin on enzymes modulating lipid metabolism confirms and supports the efficiency of emodin as a potent antidyslipidemic agent.
Journal of Biological Chemistry | 2016
Swati Agarwal; Anuradha Yadav; Shashi Kant Tiwari; Brashket Seth; L.K.S. Chauhan; Puneet Khare; Ratan Singh Ray; Rajnish Kumar Chaturvedi
The regulatory dynamics of mitochondria comprises well orchestrated distribution and mitochondrial turnover to maintain the mitochondrial circuitry and homeostasis inside the cells. Several pieces of evidence suggested impaired mitochondrial dynamics and its association with the pathogenesis of neurodegenerative disorders. We found that chronic exposure of synthetic xenoestrogen bisphenol A (BPA), a component of consumer plastic products, impaired autophagy-mediated mitochondrial turnover, leading to increased oxidative stress, mitochondrial fragmentation, and apoptosis in hippocampal neural stem cells (NSCs). It also inhibited hippocampal derived NSC proliferation and differentiation, as evident by the decreased number of BrdU- and β-III tubulin-positive cells. All these effects were reversed by the inhibition of oxidative stress using N-acetyl cysteine. BPA up-regulated the levels of Drp-1 (dynamin-related protein 1) and enhanced its mitochondrial translocation, with no effect on Fis-1, Mfn-1, Mfn-2, and Opa-1 in vitro and in the hippocampus. Moreover, transmission electron microscopy studies suggested increased mitochondrial fission and accumulation of fragmented mitochondria and decreased elongated mitochondria in the hippocampus of the rat brain. Impaired mitochondrial dynamics by BPA resulted in increased reactive oxygen species and malondialdehyde levels, disruption of mitochondrial membrane potential, and ATP decline. Pharmacological (Mdivi-1) and genetic (Drp-1siRNA) inhibition of Drp-1 reversed BPA-induced mitochondrial dysfunctions, fragmentation, and apoptosis. Interestingly, BPA-mediated inhibitory effects on NSC proliferation and neuronal differentiations were also mitigated by Drp-1 inhibition. On the other hand, Drp-1 inhibition blocked BPA-mediated Drp-1 translocation, leading to decreased apoptosis of NSC. Overall, our studies implicate Drp-1 as a potential therapeutic target against BPA-mediated impaired mitochondrial dynamics and neurodegeneration in the hippocampus.
Current Medicinal Chemistry | 2014
Shashi Kant Tiwari; Rajnish Kumar Chaturvedi
Neurodegenerative diseases are characterized by selective and progressive degeneration of neuronal population in the brain, and associated behavioural, motor, psychiatric and cognitive impairments. Aggregation of pathogenic proteins, mitochondrial dysfunction, oxidative stress, transcriptional dysfunction and apoptosis play an important role in the pathogenesis of neurodegenerative disorders such as Parkinsons disease, Huntingtons disease, Alzheimers disease and Amyotrophic lateral sclerosis. Therefore, novel therapies that target each of these mechanisms may be effective in abating the symptoms and slow down the onset and progression of neurodegenerative disorders. This review offers insights into the tremendous utility and versatility of peptides such as neurotrophins, neurotrophic factors (NGF, BDNF and GDNF), neuropeptides, mitochondrial targeted antioxidants/peptides, MitoQ, neurturin, and β-sheet breaker peptides to address the mechanisms and pathogenesis associated with neurodegenerative disorders.
Emerging microbes & infections | 2017
Shashi Kant Tiwari; Jason Dang; Yue Qin; Gianluigi Lichinchi; Vikas Bansal; Tariq M. Rana
Zika virus (ZIKV) is an emerging virus causally linked to neurological disorders, including congenital microcephaly and Guillain–Barré syndrome. There are currently no targeted therapies for ZIKV infection. To identify novel antiviral targets and to elucidate the mechanisms by which ZIKV exploits the host cell machinery to support sustained replication, we analyzed the transcriptomic landscape of human microglia, fibroblast, embryonic kidney and monocyte-derived macrophage cell lines before and after ZIKV infection. The four cell types differed in their susceptibility to ZIKV infection, consistent with differences in their expression of viral response genes before infection. Clustering and network analyses of genes differentially expressed after ZIKV infection revealed changes related to the adaptive immune system, angiogenesis and host metabolic processes that are conducive to sustained viral production. Genes related to the adaptive immune response were downregulated in microglia cells, suggesting that ZIKV effectively evades the immune response after reaching the central nervous system. Like other viruses, ZIKV diverts host cell resources and reprograms the metabolic machinery to support RNA metabolism, ATP production and glycolysis. Consistent with these transcriptomic analyses, nucleoside metabolic inhibitors abrogated ZIKV replication in microglia cells.
Current Pharmaceutical Design | 2014
Anuradha Yadav; Swati Agarwal; Shashi Kant Tiwari; Rajnish Kumar Chaturvedi
Parkinsons disease is the second most common neurodegenerative disorder characterized by persistent loss of dopaminergic neurons in the SN and clinically associated with cognitive, behavioral and motor deficits. There is an enormous amount of data that provides convincing evidence about the prime involvement of mitochondria in the onset and progression of neurodegeneration. Several studies have also emphasized that accumulation of toxic protein and their aggregates in mitochondria lead to energy deficits, excessive ROS generation, mutations in mitochondrial genome and proteins regulating mitochondrial homeostasis, and impaired mitochondrial dynamics in animal models of PD and patients. Here we discuss about the bioenergetic agents, which have been tested for reducing the mitochondrial dysfunction and associated disease pathology in cellular and animal models of PD and PD patients with encouraging outcomes. We also provide a succinct overview of current therapeutic implications of PGC-1α, SIRT, AMPK, and Nrf2-ARE as salutary targets to overcome the deleterious effects posed by mitochondrial dysfunction in the onset and progression of PD.