Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shaun D. Fouse is active.

Publication


Featured researches published by Shaun D. Fouse.


Nature | 2010

Conserved role of intragenic DNA methylation in regulating alternative promoters.

Alika K. Maunakea; Raman P. Nagarajan; Mikhail Bilenky; Tracy Ballinger; Cletus D'souza; Shaun D. Fouse; Brett E. Johnson; Chibo Hong; Cydney Nielsen; Yongjun Zhao; Gustavo Turecki; Allen Delaney; Richard Varhol; Nina Thiessen; Ksenya Shchors; Vivi M. Heine; David H. Rowitch; Xiaoyun Xing; Chris Fiore; Maximiliaan Schillebeeckx; Steven J.M. Jones; David Haussler; Marco A. Marra; Martin Hirst; Ting Wang; Joseph F. Costello

Although it is known that the methylation of DNA in 5′ promoters suppresses gene expression, the role of DNA methylation in gene bodies is unclear. In mammals, tissue- and cell type-specific methylation is present in a small percentage of 5′ CpG island (CGI) promoters, whereas a far greater proportion occurs across gene bodies, coinciding with highly conserved sequences. Tissue-specific intragenic methylation might reduce, or, paradoxically, enhance transcription elongation efficiency. Capped analysis of gene expression (CAGE) experiments also indicate that transcription commonly initiates within and between genes. To investigate the role of intragenic methylation, we generated a map of DNA methylation from the human brain encompassing 24.7 million of the 28 million CpG sites. From the dense, high-resolution coverage of CpG islands, the majority of methylated CpG islands were shown to be in intragenic and intergenic regions, whereas less than 3% of CpG islands in 5′ promoters were methylated. The CpG islands in all three locations overlapped with RNA markers of transcription initiation, and unmethylated CpG islands also overlapped significantly with trimethylation of H3K4, a histone modification enriched at promoters. The general and CpG-island-specific patterns of methylation are conserved in mouse tissues. An in-depth investigation of the human SHANK3 locus and its mouse homologue demonstrated that this tissue-specific DNA methylation regulates intragenic promoter activity in vitro and in vivo. These methylation-regulated, alternative transcripts are expressed in a tissue- and cell type-specific manner, and are expressed differentially within a single cell type from distinct brain regions. These results support a major role for intragenic methylation in regulating cell context-specific alternative promoters in gene bodies.


Nature Biotechnology | 2010

Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications

R. Alan Harris; Ting Wang; Cristian Coarfa; Raman P. Nagarajan; Chibo Hong; Sara L. Downey; Brett E. Johnson; Shaun D. Fouse; Allen Delaney; Yongjun Zhao; Adam B. Olshen; Tracy Ballinger; Xin Zhou; Kevin J. Forsberg; Junchen Gu; Lorigail Echipare; Henriette O'Geen; Ryan Lister; Mattia Pelizzola; Yuanxin Xi; Charles B. Epstein; Bradley E. Bernstein; R. David Hawkins; Bing Ren; Wen-Yu Chung; Hongcang Gu; Christoph Bock; Andreas Gnirke; Michael Q. Zhang; David Haussler

Analysis of DNA methylation patterns relies increasingly on sequencing-based profiling methods. The four most frequently used sequencing-based technologies are the bisulfite-based methods MethylC-seq and reduced representation bisulfite sequencing (RRBS), and the enrichment-based techniques methylated DNA immunoprecipitation sequencing (MeDIP-seq) and methylated DNA binding domain sequencing (MBD-seq). We applied all four methods to biological replicates of human embryonic stem cells to assess their genome-wide CpG coverage, resolution, cost, concordance and the influence of CpG density and genomic context. The methylation levels assessed by the two bisulfite methods were concordant (their difference did not exceed a given threshold) for 82% for CpGs and 99% of the non-CpG cytosines. Using binary methylation calls, the two enrichment methods were 99% concordant and regions assessed by all four methods were 97% concordant. We combined MeDIP-seq with methylation-sensitive restriction enzyme (MRE-seq) sequencing for comprehensive methylome coverage at lower cost. This, along with RNA-seq and ChIP-seq of the ES cells enabled us to detect regions with allele-specific epigenetic states, identifying most known imprinted regions and new loci with monoallelic epigenetic marks and monoallelic expression.


Science | 2014

Mutational Analysis Reveals the Origin and Therapy-driven Evolution of Recurrent Glioma

Brett E. Johnson; Tali Mazor; Chibo Hong; Michael Barnes; Koki Aihara; Cory Y. McLean; Shaun D. Fouse; Shogo Yamamoto; Hiroki R. Ueda; Kenji Tatsuno; Saurabh Asthana; Llewellyn E. Jalbert; Sarah J. Nelson; Andrew W. Bollen; W. Clay Gustafson; Elise Charron; William A. Weiss; Ivan Smirnov; Jun S. Song; Adam B. Olshen; Soonmee Cha; Yongjun Zhao; Richard A. Moore; Andrew J. Mungall; Steven J.M. Jones; Martin Hirst; Marco A. Marra; Nobuhito Saito; Hiroyuki Aburatani; Akitake Mukasa

Back with a Vengeance After surgery, gliomas (a type of brain tumor) recur in nearly all patients and often in a more aggressive form. Johnson et al. (p. 189, published online 12 December 2013) used exome sequencing to explore whether recurrent tumors harbor different mutations than the primary tumors and whether the mutational profile in the recurrences is influenced by postsurgical treatment of patients with temozolomide (TMZ), a chemotherapeutic drug known to damage DNA. In more than 40% of cases, at least half of the mutations in the initial glioma were undetected at recurrence. The recurrent tumors in many of the TMZ-treated patients bore the signature of TMZ-induced mutagenesis and appeared to follow an evolutionary path to high-grade glioma distinct from that in untreated patients. Primary brain tumors and their recurrences can exhibit vastly different mutational profiles. Tumor recurrence is a leading cause of cancer mortality. Therapies for recurrent disease may fail, at least in part, because the genomic alterations driving the growth of recurrences are distinct from those in the initial tumor. To explore this hypothesis, we sequenced the exomes of 23 initial low-grade gliomas and recurrent tumors resected from the same patients. In 43% of cases, at least half of the mutations in the initial tumor were undetected at recurrence, including driver mutations in TP53, ATRX, SMARCA4, and BRAF; this suggests that recurrent tumors are often seeded by cells derived from the initial tumor at a very early stage of their evolution. Notably, tumors from 6 of 10 patients treated with the chemotherapeutic drug temozolomide (TMZ) followed an alternative evolutionary path to high-grade glioma. At recurrence, these tumors were hypermutated and harbored driver mutations in the RB (retinoblastoma) and Akt-mTOR (mammalian target of rapamycin) pathways that bore the signature of TMZ-induced mutagenesis.


Cell Stem Cell | 2008

Promoter CpG Methylation Contributes to ES Cell Gene Regulation in Parallel with Oct4/Nanog, PcG Complex, and Histone H3 K4/K27 Trimethylation

Shaun D. Fouse; Yin Shen; Matteo Pellegrini; Steve W. Cole; Alexander Meissner; Leander Van Neste; Rudolf Jaenisch; Guoping Fan

We report here genome-wide mapping of DNA methylation patterns at proximal promoter regions in mouse embryonic stem (mES) cells. Most methylated genes are differentiation associated and repressed in mES cells. By contrast, the unmethylated gene set includes many housekeeping and pluripotency genes. By crossreferencing methylation patterns to genome-wide mapping of histone H3 lysine (K) 4/27 trimethylation and binding of Oct4, Nanog, and Polycomb proteins on gene promoters, we found that promoter DNA methylation is the only marker of this group present on approximately 30% of genes, many of which are silenced in mES cells. In demethylated mutant mES cells, we saw upregulation of a subset of X-linked genes and developmental genes that are methylated in wild-type mES cells, but lack either H3K4 and H3K27 trimethylation or association with Polycomb, Oct4, or Nanog. Our data suggest that in mES cells promoter methylation represents a unique epigenetic program that complements other regulatory mechanisms to ensure appropriate gene expression.


Development | 2005

DNA methylation controls the timing of astrogliogenesis through regulation of JAK-STAT signaling

Guoping Fan; Keri Martinowich; Mark H. Chin; Fei He; Shaun D. Fouse; Leah Hutnick; Daisuke Hattori; Weihong Ge; Yin Shen; Hao Wu; Johanna ten Hoeve; Ke Shuai; Yi E. Sun

DNA methylation is a major epigenetic factor that has been postulated to regulate cell lineage differentiation. We report here that conditional gene deletion of the maintenance DNA methyltransferase I (Dnmt1) in neural progenitor cells (NPCs) results in DNA hypomethylation and precocious astroglial differentiation. The developmentally regulated demethylation of astrocyte marker genes as well as genes encoding the crucial components of the gliogenic JAK-STAT pathway is accelerated in Dnmt1–/– NPCs. Through a chromatin remodeling process, demethylation of genes in the JAK-STAT pathway leads to an enhanced activation of STATs, which in turn triggers astrocyte differentiation. Our study suggests that during the neurogenic period, DNA methylation inhibits not only astroglial marker genes but also genes that are essential for JAK-STAT signaling. Thus, demethylation of these two groups of genes and subsequent elevation of STAT activity are key mechanisms that control the timing and magnitude of astroglial differentiation.


Pediatric Research | 2007

Epigenetic Regulation of Neural Gene Expression and Neuronal Function

Jian Feng; Shaun D. Fouse; Guoping Fan

The development and function of the CNS requires accurate gene transcription control in response to proper environmental signals. Epigenetic mechanisms, including DNA methylation, histone modifications, and other chromatin-remodeling events, are critically important in mediating precise neural gene regulation. This review focuses on discussing the role of DNA methylation and histone modifications in neural lineage differentiation, synaptic plasticity and neural behavior. We postulate that DNA methylation– and histone modification–mediated gene regulation is not only important for neural cell differentiation but also crucial for high-order cognitive functions such as learning and memory.


Science | 2015

The transcription factor GABP selectively binds and activates the mutant TERT promoter in cancer

Robert J.A. Bell; H. Tomas Rube; Alex Kreig; Andrew Mancini; Shaun D. Fouse; Raman P. Nagarajan; Serah Choi; Chibo Hong; Daniel He; Melike Pekmezci; John K. Wiencke; Margaret Wrensch; Susan M. Chang; Kyle M. Walsh; Sua Myong; Jun S. Song; Joseph F. Costello

A mutant promoters partner in crime Telomerase is an enzyme that maintains the ends of chromosomes. TERT, the gene coding for the enzymes catalytic subunit, is not expressed in healthy somatic cells, but its expression is reactivated in the majority of human cancers. The resultant high levels of telomerase help cancer cells survive and multiply. Recurrent mutations in the promoter region of TERT are associated with high telomerase levels in multiple cancer types. Bell et al. show that a specific transcription factor called GABP is selectively recruited to the mutant form of the TERT promoter, which activates TERT gene expression Science, this issue p. 1036 Cancer-associated mutations in the promoter of the telomerase gene allow increased activation by transcription factor binding. Reactivation of telomerase reverse transcriptase (TERT) expression enables cells to overcome replicative senescence and escape apoptosis, which are fundamental steps in the initiation of human cancer. Multiple cancer types, including up to 83% of glioblastomas (GBMs), harbor highly recurrent TERT promoter mutations of unknown function but specific to two nucleotide positions. We identified the functional consequence of these mutations in GBMs to be recruitment of the multimeric GA-binding protein (GABP) transcription factor specifically to the mutant promoter. Allelic recruitment of GABP is consistently observed across four cancer types, highlighting a shared mechanism underlying TERT reactivation. Tandem flanking native E26 transformation-specific motifs critically cooperate with these mutations to activate TERT, probably by facilitating GABP heterotetramer binding. GABP thus directly links TERT promoter mutations to aberrant expression in multiple cancers.


Proceedings of the National Academy of Sciences of the United States of America | 2008

X-inactivation in female human embryonic stem cells is in a nonrandom pattern and prone to epigenetic alterations

Yin Shen; Youko Matsuno; Shaun D. Fouse; Nagesh Rao; Sierra Root; Ren-He Xu; Matteo Pellegrini; Arthur D. Riggs; Guoping Fan

X chromosome inactivation (XCI) is an essential mechanism for dosage compensation of X-linked genes in female cells. We report that subcultures from lines of female human embryonic stem cells (hESCs) exhibit variation (0–100%) for XCI markers, including XIST RNA expression and enrichment of histone H3 lysine 27 trimethylation (H3K27me3) on the inactive X chromosome (Xi). Surprisingly, regardless of the presence or absence of XCI markers in different cultures, all female hESCs we examined (H7, H9, and HSF6 cells) exhibit a monoallelic expression pattern for a majority of X-linked genes. Our results suggest that these established female hESCs have already completed XCI during the process of derivation and/or propagation, and the XCI pattern of lines we investigated is already not random. Moreover, XIST gene expression in subsets of cultured female hESCs is unstable and subject to stable epigenetic silencing by DNA methylation. In the absence of XIST expression, ≈12% of X-linked promoter CpG islands become hypomethylated and a portion of X-linked alleles on the Xi are reactivated. Because alterations in dosage compensation of X-linked genes could impair somatic cell function, we propose that XCI status should be routinely checked in subcultures of female hESCs, with cultures displaying XCI markers better suited for use in regenerative medicine.


Epigenomics | 2010

Genome-scale DNA methylation analysis

Shaun D. Fouse; Raman P. Nagarajan; Joseph F. Costello

The haploid human genome contains approximately 29 million CpGs that exist in a methylated, hydroxymethylated or unmethylated state, collectively referred to as the DNA methylome. The methylation status of cytosines in CpGs and occasionally in non-CpG cytosines influences protein–DNA interactions, gene expression, and chromatin structure and stability. The degree of DNA methylation at particular loci may be heritable transgenerationally and may be altered by environmental exposures and diet, potentially contributing to the development of human diseases. For the vast majority of normal and disease methylomes however, less than 1% of the CpGs have been assessed, revealing the formative stage of methylation mapping techniques. Thus, there is significant discovery potential in new genome-scale platforms applied to methylome mapping, particularly oligonucleotide arrays and the transformative technology of next-generation sequencing. Here, we outline the currently used methylation detection reagents and their application to microarray and sequencing platforms. A comparison of the emerging methods is presented, highlighting their degrees of technical complexity, methylome coverage and precision in resolving methylation. Because there are hundreds of unique methylomes to map within one individual and interindividual variation is likely to be significant, international coordination is essential to standardize methylome platforms and to create a full repository of methylome maps from tissues and unique cell types.


Acta Neuropathologica | 2015

Evolution of DNA repair defects during malignant progression of low-grade gliomas after temozolomide treatment

Hinke F. van Thuijl; Tali Mazor; Brett E. Johnson; Shaun D. Fouse; Koki Aihara; Chibo Hong; Annika Malmström; Martin Hallbeck; Jan J. Heimans; Jenneke Kloezeman; Marie Stenmark-Askmalm; Martine Lamfers; Nobuhito Saito; Hiroyuki Aburatani; Akitake Mukasa; Mitchell S. Berger; Peter Söderkvist; Barry S. Taylor; Annette M. Molinaro; Pieter Wesseling; Jaap C. Reijneveld; Susan M. Chang; Bauke Ylstra; Joseph F. Costello

Temozolomide (TMZ) increases the overall survival of patients with glioblastoma (GBM), but its role in the clinical management of diffuse low-grade gliomas (LGG) is still being defined. DNA hypermethylation of the O6-methylguanine-DNA methyltransferase (MGMT) promoter is associated with an improved response to TMZ treatment, while inactivation of the DNA mismatch repair (MMR) pathway is associated with therapeutic resistance and TMZ-induced mutagenesis. We previously demonstrated that TMZ treatment of LGG induces driver mutations in the RB and AKT–mTOR pathways, which may drive malignant progression to secondary GBM. To better understand the mechanisms underlying TMZ-induced mutagenesis and malignant progression, we explored the evolution of MGMT methylation and genetic alterations affecting MMR genes in a cohort of 34 treatment-naïve LGGs and their recurrences. Recurrences with TMZ-associated hypermutation had increased MGMT methylation compared to their untreated initial tumors and higher overall MGMT methylation compared to TMZ-treated non-hypermutated recurrences. A TMZ-associated mutation in one or more MMR genes was observed in five out of six TMZ-treated hypermutated recurrences. In two cases, pre-existing heterozygous deletions encompassing MGMT, or an MMR gene, were followed by TMZ-associated mutations in one of the genes of interest. These results suggest that tumor cells with methylated MGMT may undergo positive selection during TMZ treatment in the context of MMR deficiency.

Collaboration


Dive into the Shaun D. Fouse's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chibo Hong

University of California

View shared research outputs
Top Co-Authors

Avatar

Guoping Fan

University of California

View shared research outputs
Top Co-Authors

Avatar

Susan M. Chang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yin Shen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge