Shaun S. Sanders
University of British Columbia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shaun S. Sanders.
The FASEB Journal | 2009
Kun Huang; Shaun S. Sanders; Roshni R. Singaraja; Paul C. Orban; Tony Cijsouw; Pamela Arstikaitis; Anat Yanai; Michael R. Hayden; Alaa El-Husseini
Palmitoylation, a post‐translational modification of cysteine residues with the lipid palmitate, has recently emerged as an important mechanism for regulating protein trafficking and function. With the identification of 23 DHHC mammalian palmitoyl acyl transferases (PATs), a key question was the nature of substrate‐enzyme specificity for these PATs. Using the acyl‐biotin exchange palmitoylation assay, we compared the substrate specificity of four neuronal PATs, namely DHHC‐3, DHHC‐8, HIP14L (DHHC‐13), and HIP14 (DHHC‐17). Exogenous expression of enzymes and substrates in COS cells reveals that HIP14L and HIP14 modulate huntingtin palmitoylation, DHHC‐8 modulates paralemmin‐1 palmitoylation, and DHHC‐3 shows the least substrate specificity. These in vitro data were validated by lentiviral siRNA‐mediated knockdown of endogenous HIP14 and DHHC‐3 in cultured rat cortical neurons. PATs require the presence of palmitoylated cysteines in order to interact with their substrates. To understand the elements that influence enzyme/ substrate specificity further, we fused the HIP14 ankryin repeat domain to the N terminus of DHHC‐3, which is not a PAT for huntingtin. This modification enabled DHHC‐3 to behave similarly to HIP14 by modulating palmitoylation and trafficking of huntingtin. Taken together, this study indicates that individual PATs have specific substrate preference, determined by regulatory domains outside the DHHC domain of the enzymes.— Huang, K., Sanders, S., Singaraja, R., Orban, P., Cij‐souw, T., Arstikaitis, P., Yanai, A., Hayden, M. R., El‐Husseini, A. Neuronal palmitoyl acyl transferases exhibit distinct substrate specificity. FASEB J. 23, 2605–2615 (2009)
Progress in Neurobiology | 2012
Fiona B. Young; Stefanie L. Butland; Shaun S. Sanders; Liza M. Sutton; Michael R. Hayden
Post-translational modification of proteins by the lipid palmitate is critical for protein localization and function. Palmitoylation is regulated by the opposing enzymes palmitoyl acyltransferases (PATs) and acyl protein thioesterases, which add and remove palmitate from proteins, respectively. Palmitoylation is particularly important for a number of processes including neuronal development and synaptic activity in the central nervous system. Dysregulated palmitoylation contributes to neuropsychiatric disease. In total six PATs (HIP14, HIP14L, ZDHHC8, ZDHHC9, ZDHHC12, and ZDHHC15) and one thioesterase (PPT1) have been implicated in Huntington disease (HD), Alzheimer disease, schizophrenia, mental retardation, and infantile and adult onset forms of neuronal ceroid lipofuscinosis. Currently there is no genetic link between PATs and Alzheimer disease pathogenesis but palmitoylation of amyloid precursor protein-processing enzyme, γ-secretase, influences β-amyloid generation. Several lines of evidence point to a role for palmitoylation by HIP14 in the pathogenesis of HD; HIP14 is dysfunctional in the presence of the HD mutation and Hip14-deficient mice develop features of HD. Wildtype huntingtin (the protein mutated in HD) enhances the PAT activity of HIP14 and mutant HTT interacts less with HIP14. Therefore, it may be that loss of the positive modulation of HIP14 activity due to reduced interaction with huntingtin is important in the disease mechanism. Preliminary evidence suggests a closely related PAT to HIP14, HIP14L, may also play a role in the pathogenesis of HD. In order to design rational therapeutic approaches to restore palmitoylation in neuropsychiatric disease, it will be critical to better understand the relationships between PATs and thioesterases with their regulators and substrates.
Neurobiology of Disease | 2010
Kun Huang; Martin H. Kang; Caitlin Askew; Rujun Kang; Shaun S. Sanders; Junmei Wan; Nicholas G. Davis; Michael R. Hayden
Excitotoxicity plays a key role in the selective vulnerability of striatal neurons in Huntington disease (HD). Decreased glutamate uptake by glial cells could account for the excess glutamate at the synapse in patients as well as animal models of HD. The major molecule responsible for clearing glutamate at the synapses is glial glutamate transporter GLT-1. In this study, we show that GLT-1 is palmitoylated at cysteine38 (C38) and further, that this palmitoylation is drastically reduced in HD models both in vitro and in vivo. Palmitoylation is required for normal GLT-1 function. Blocking palmitoylation either with the general palmitoylation inhibitor, 2-bromopalmitate, or with a GLT-1 C38S mutation, severely impairs glutamate uptake activity. In addition, GLT-1-mediated glutamate uptake is indeed impaired in the YAC128 HD mouse brain, with the defect in the striatum evident as early as 3 months prior to obvious neuropathological findings, and in both striatum and cortex at 12 months. These phenotypes are not a result of changes in GLT1 protein expression, suggesting a crucial role of palmitoylation in GLT-1 function. Thus, it appears that impaired GLT-1 palmitoylation is present early in the pathogenesis of HD, and may influence decreased glutamate uptake, excitotoxicity, and ultimately, neuronal cell death in HD.
Human Molecular Genetics | 2011
Kun Huang; Shaun S. Sanders; Rujun Kang; Jeffrey B. Carroll; Liza M. Sutton; Junmei Wan; Roshni R. Singaraja; Fiona B. Young; Lili Liu; Alaa El-Husseini; Nicholas G. Davis; Michael R. Hayden
Huntington disease (HD) is caused by polyglutamine expansion in the huntingtin (HTT) protein. Huntingtin-interacting protein 14 (HIP14), one of 23 DHHC domain-containing palmitoyl acyl transferases (PATs), binds to HTT and robustly palmitoylates HTT at cysteine 214. Mutant HTT exhibits reduced palmitoylation and interaction with HIP14, contributing to the neuronal dysfunction associated with HD. In this study, we confirmed that, among 23 DHHC PATs, HIP14 and its homolog DHHC-13 (HIP14L) are the two major PATs that palmitoylate HTT. Wild-type HTT, in addition to serving as a palmitoylation substrate, also modulates the palmitoylation of HIP14 itself. In vivo, HIP14 palmitoylation is decreased in the brains of mice lacking one HTT allele (hdh+/-) and is further reduced in mouse cortical neurons treated with HTT antisense oligos (HTT-ASO) that knockdown HTT expression by ∼95%. Previously, it has been shown that palmitoylation of DHHC proteins may affect their enzymatic activity. Indeed, palmitoylation of SNAP25 by HIP14 is potentiated in vitro in the presence of wild-type HTT. This influence of HTT on HIP14 activity is lost in the presence of CAG expansion. Furthermore, in both brains of hdh+/- mice and neurons treated with HTT-ASO, we observe a significant reduction in palmitoylation of endogenous SNAP25 and GluR1, synaptic proteins that are substrates of HIP14, suggesting wild-type HTT also influences HIP14 enzymatic activity in vivo. This study describes an important biochemical function for wild-type HTT modulation of HIP14 palmitoylation and its enzymatic activity.
Circulation Research | 2009
Roshni R. Singaraja; Martin H. Kang; Kuljeet Vaid; Shaun S. Sanders; Gonzalo L. Vilas; Pamela Arstikaitis; Jonathan M. Coutinho; Renaldo C. Drisdel; Alaa El-Husseini; William N. Green; Luc G. Berthiaume; Michael R. Hayden
ATP-binding cassette transporter (ABC)A1 lipidates apolipoprotein A-I both directly at the plasma membrane and also uses lipids from the late endosomal or lysosomal compartment in the internal lipidation of apolipoprotein A-I. However, how ABCA1 targeting to these specific membranes is regulated remains unknown. Palmitoylation is a dynamically regulated lipid modification that targets many proteins to specific membrane domains. We hypothesized that palmitoylation may also regulate ABCA1 transport and function. Indeed, ABCA1 is robustly palmitoylated at cysteines 3, -23, -1110, and -1111. Abrogation of palmitoylation of ABCA1 by mutation of the cysteines results in a reduction of ABCA1 localization at the plasma membranes and a reduction in the ability of ABCA1 to efflux lipids to apolipoprotein A-I. ABCA1 is palmitoylated by the palmitoyl transferase DHHC8, and increasing DHHC8 protein results in increased ABCA1-mediated lipid efflux. Thus, palmitoylation regulates ABCA1 localization at the plasma membrane, and regulates its lipid efflux ability.
Chemistry & Biology | 2013
Junmei Wan; Jeffrey N. Savas; Amy F. Roth; Shaun S. Sanders; Roshni R. Singaraja; Michael R. Hayden; John R. Yates; Nicholas G. Davis
Protein palmitoylation, a reversible lipid modification of proteins, is widely used in the nervous system, with dysregulated palmitoylation being implicated in a variety of neurological disorders. Described below is ABE/SILAM, a proteomic strategy that couples acyl-biotinyl exchange (ABE) purification of palmitoyl-proteins to whole animal stable isotope labeling (SILAM) to provide an accurate tracking of palmitoylation change within rodent disease models. As a first application, we have used ABE/SILAM to look at Huntingtons disease (HD), profiling palmitoylation change in two HD-relevant mouse mutants: the transgenic HD model mouse YAC128 and the hypomorphic Hip14-gt mouse, which has sharply reduced expression for HIP14 (Zdhhc17), a palmitoyl-transferase implicated in the HD disease process. Rather than mapping to the degenerating neurons themselves, the biggest disease changes instead map to astrocytes and oligodendrocytes (i.e., the supporting glial cells).
Human Molecular Genetics | 2013
Liza M. Sutton; Shaun S. Sanders; Stefanie L. Butland; Roshni R. Singaraja; Sonia Franciosi; Amber L. Southwell; Crystal N. Doty; Mandi E. Schmidt; Katherine K. N. Mui; Vlad Kovalik; Fiona B. Young; Weining Zhang; Michael R. Hayden
Palmitoylation, the dynamic post-translational addition of the lipid, palmitate, to proteins by Asp-His-His-Cys-containing palmitoyl acyltransferase (PAT) enzymes, modulates protein function and localization and plays a key role in the nervous system. Huntingtin-interacting protein 14 (HIP14), a well-characterized neuronal PAT, has been implicated in the pathogenesis of Huntington disease (HD), a fatal neurodegenerative disease associated with motor, psychiatric and cognitive symptoms, caused by a CAG expansion in the huntingtin gene (HTT). Mice deficient for Hip14 expression develop neuropathological and behavioural features similar to HD, and the catalytic activity of HIP14 is impaired in HD mice, most likely due to the reduced interaction of HIP14 with HTT. Huntingtin-interacting protein 14-like (HIP14L) is a paralog of HIP14, with identical domain structure. Together, HIP14 and HIP14L are the major PATs for HTT. Here, we report the characterization of a Hip14l-deficient mouse model, which develops adult-onset, widespread and progressive neuropathology accompanied by early motor deficits in climbing, impaired motor learning and reduced palmitoylation of a novel HIP14L substrate: SNAP25. Although the phenotype resembles that of the Hip14(-/-) mice, a more progressive phenotype, similar to that of the YAC128 transgenic mouse model of HD, is observed. In addition, HIP14L interacts less with mutant HTT than the wild-type protein, suggesting that reduced HIP14L-dependent palmitoylation of neuronal substrates may contribute to the pathogenesis of HD. Thus, both HIP14 and HIP14L may be dysfunctional in the disease.
PLOS Computational Biology | 2015
Shaun S. Sanders; Dale D. O. Martin; Stefanie L. Butland; Mathieu Lavallée-Adam; Diego Calzolari; Chris Kay; John R. Yates; Michael R. Hayden
Palmitoylation involves the reversible posttranslational addition of palmitate to cysteines and promotes membrane binding and subcellular localization. Recent advancements in the detection and identification of palmitoylated proteins have led to multiple palmitoylation proteomics studies but these datasets are contained within large supplemental tables, making downstream analysis and data mining time-consuming and difficult. Consequently, we curated the data from 15 palmitoylation proteomics studies into one compendium containing 1,838 genes encoding palmitoylated proteins; representing approximately 10% of the genome. Enrichment analysis revealed highly significant enrichments for Gene Ontology biological processes, pathway maps, and process networks related to the nervous system. Strikingly, 41% of synaptic genes encode a palmitoylated protein in the compendium. The top disease associations included cancers and diseases and disorders of the nervous system, with Schizophrenia, HD, and pancreatic ductal carcinoma among the top five, suggesting that aberrant palmitoylation may play a pivotal role in the balance of cell death and survival. This compendium provides a much-needed resource for cell biologists and the palmitoylation field, providing new perspectives for cancer and neurodegeneration.
Human Molecular Genetics | 2014
Stefanie L. Butland; Shaun S. Sanders; Mandi E. Schmidt; Sean-Patrick Riechers; David T.S. Lin; Dale D. O. Martin; Kuljeet Vaid; Rona K. Graham; Roshni R. Singaraja; Erich E. Wanker; Elizabeth Conibear; Michael R. Hayden
HIP14 is the most highly conserved of 23 human palmitoyl acyltransferases (PATs) that catalyze the post-translational addition of palmitate to proteins, including huntingtin (HTT). HIP14 is dysfunctional in the presence of mutant HTT (mHTT), the causative gene for Huntington disease (HD), and we hypothesize that reduced palmitoylation of HTT and other HIP14 substrates contributes to the pathogenesis of the disease. Here we describe the yeast two-hybrid (Y2H) interactors of HIP14 in the first comprehensive study of interactors of a mammalian PAT. Unexpectedly, we discovered a highly significant overlap between HIP14 interactors and 370 published interactors of HTT, 4-fold greater than for control proteins (P = 8 × 10(-5)). Nearly half of the 36 shared interactors are already implicated in HD, supporting a direct link between HIP14 and the disease. The HIP14 Y2H interaction set is significantly enriched for palmitoylated proteins that are candidate substrates. We confirmed that three of them, GPM6A, and the Sprouty domain-containing proteins SPRED1 and SPRED3, are indeed palmitoylated by HIP14; the first enzyme known to palmitoylate these proteins. These novel substrates functions might be affected by reduced palmitoylation in HD. We also show that the vesicular cargo adapter optineurin, an established HTT-binding protein, co-immunoprecipitates with HIP14 but is not palmitoylated. mHTT leads to mislocalization of optineurin and aberrant cargo trafficking. Therefore, it is possible that optineurin regulates trafficking of HIP14 to its substrates. Taken together, our data raise the possibility that defective palmitoylation by HIP14 might be an important mechanism that contributes to the pathogenesis of HD.
Journal of Biological Chemistry | 2014
Matthew P. Parsons; Rujun Kang; Caodu Buren; Alejandro Dau; Amber L. Southwell; Crystal N. Doty; Shaun S. Sanders; Michael R. Hayden; Lynn A. Raymond
Background: Wild-type huntingtin (HTT) interacts with synaptic proteins, yet its role in synaptic function is unclear. Results: HTT bidirectionally influences PSD-95 clustering in striatal spiny projection neurons. Conclusion: HTT plays a role in synaptic protein organization. Significance: HTT-reducing strategies are being tested as a treatment for Huntington disease. It is therefore critical to understand the role of HTT in cellular and synaptic function. Huntington disease is associated with early alterations in corticostriatal synaptic function that precede cell death, and it is postulated that ameliorating such changes may delay clinical onset and/or prevent neurodegeneration. Although many of these synaptic alterations are thought to be attributable to a toxic gain of function of the mutant huntingtin protein, the role that nonpathogenic huntingtin (HTT) plays in synaptic function is relatively unexplored. Here, we compare the immunocytochemical localization of a major postsynaptic scaffolding protein, PSD-95, in striatal neurons from WT mice and mice overexpressing HTT with 18 glutamine repeats (YAC18, nonpathogenic). We found that HTT overexpression resulted in a palmitoylation- and BDNF-dependent increase in PSD-95 clustering at synaptic sites in striatal spiny projection neurons (SPNs) co-cultured with cortical neurons. Surprisingly, the latter effect was mediated presynaptically, as HTT overexpression in cortical neurons alone was sufficient to increase PSD-95 clustering in the postsynaptic SPNs. In contrast, antisense oligonucleotide knockdown of HTT in WT co-cultures resulted in a significant reduction of PSD-95 clustering in SPNs. Notably, despite these bidirectional changes in PSD-95 clustering, we did not observe an alteration in basal electrophysiological measures of AMPA and NMDA receptors. Thus, unlike in previous studies in the hippocampus, enhanced or decreased PSD-95 clustering alone was insufficient to drive AMPA or NMDA receptors into or out of SPN synapses. In all, our results demonstrate that nonpathogenic HTT can indeed influence synaptic protein localization and uncover a novel role of HTT in PSD-95 distribution.