Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shayanti Mukherjee is active.

Publication


Featured researches published by Shayanti Mukherjee.


Journal of the Royal Society Interface | 2010

Applications of conducting polymers and their issues in biomedical engineering

Rajeswari Ravichandran; Subramanian Sundarrajan; Jayarama Reddy Venugopal; Shayanti Mukherjee; Seeram Ramakrishna

Conducting polymers (CPs) have attracted much interest as suitable matrices of biomolecules and have been used to enhance the stability, speed and sensitivity of various biomedical devices. Moreover, CPs are inexpensive, easy to synthesize and versatile because their properties can be readily modulated by (i) surface functionalization techniques and (ii) the use of a wide range of molecules that can be entrapped or used as dopants. This paper discusses the various surface modifications of the CP that can be employed in order to impart physico-chemical and biological guidance cues that promote cell adhesion/proliferation at the polymer–tissue interface. This ability of the CP to induce various cellular mechanisms widens its applications in medical fields and bioengineering.


Biomaterials | 2012

Precipitation of nanohydroxyapatite on PLLA/PBLG/Collagen nanofibrous structures for the differentiation of adipose derived stem cells to osteogenic lineage.

Rajeswari Ravichandran; Jayarama Reddy Venugopal; Subramanian Sundarrajan; Shayanti Mukherjee; Seeram Ramakrishna

Tissue engineering and nanotechnology have enabled engineering of nanostructured materials to meet the current challenges in bone treatment owing to rising occurrence of bone diseases, accidental damages and defects. Poly(L-lactic acid)/Poly-benzyl-L-glutamate/Collagen (PLLA/PBLG/Col) scaffolds were fabricated by electrospinning and nanohydroxyapatite (n-HA) was deposited by calcium-phosphate dipping method for bone tissue engineering (BTE). The abundance and accessibility of adipose derived stem cells (ADSC) may prove to be novel cell therapeutics for bone repair and regeneration. ADSCs were cultured on these scaffolds and were induced to undergo osteogenic differentiation in the presence of PBLG/n-HA for BTE. The cell-biomaterial interactions were analyzed using cell proliferation, SEM and CMFDA dye extraction techniques. Osteogenic differentiation of ADSC was confirmed using alkaline phosphatase activity (ALP), mineralization (ARS) and dual immunofluorescent staining using both ADSC marker protein and Osteocalcin, which is a bone specific protein. The utmost significance of this study is the bioactive PBLG/n-HA biomolecule introduced on the polymeric nanofibers to regulate and improve specific biological functions like adhesion, proliferation and differentiation of ADSC into osteogenic lineage. This was evident from the immunostaining and CMFDA images of ADSCs showing cuboidal morphology, characteristic of osteogenic lineage. The observed results proved that the PLLA/PBLG/Col/n-HA scaffolds promoted greater osteogenic differentiation of ADSC as evident from the enzyme activity and mineralization profiles for bone tissue engineering.


Journal of the Royal Society Interface | 2012

Biomaterial strategies for alleviation of myocardial infarction

Jayarama Reddy Venugopal; Molamma P. Prabhakaran; Shayanti Mukherjee; Rajeswari Ravichandran; Kai Dan; Seeram Ramakrishna

World Health Organization estimated that heart failure initiated by coronary artery disease and myocardial infarction (MI) leads to 29 per cent of deaths worldwide. Heart failure is one of the leading causes of death in industrialized countries and is expected to become a global epidemic within the twenty-first century. MI, the main cause of heart failure, leads to a loss of cardiac tissue impairment of left ventricular function. The damaged left ventricle undergoes progressive ‘remodelling’ and chamber dilation, with myocyte slippage and fibroblast proliferation. Repair of diseased myocardium with in vitro-engineered cardiac muscle patch/injectable biopolymers with cells may become a viable option for heart failure patients. These events reflect an apparent lack of effective intrinsic mechanism for myocardial repair and regeneration. Motivated by the desire to develop minimally invasive procedures, the last 10 years observed growing efforts to develop injectable biomaterials with and without cells to treat cardiac failure. Biomaterials evaluated include alginate, fibrin, collagen, chitosan, self-assembling peptides, biopolymers and a range of synthetic hydrogels. The ultimate goal in therapeutic cardiac tissue engineering is to generate biocompatible, non-immunogenic heart muscle with morphological and functional properties similar to natural myocardium to repair MI. This review summarizes the properties of biomaterial substrates having sufficient mechanical stability, which stimulates the native collagen fibril structure for differentiating pluripotent stem cells and mesenchymal stem cells into cardiomyocytes for cardiac tissue engineering.


Macromolecular Bioscience | 2012

Advances in Polymeric Systems for Tissue Engineering and Biomedical Applications

Rajeswari Ravichandran; Subramanian Sundarrajan; Jayarama Reddy Venugopal; Shayanti Mukherjee; Seeram Ramakrishna

The characteristics of tissue engineered scaffolds are major concerns in the quest to fabricate ideal scaffolds for tissue engineering applications. The polymer scaffolds employed for tissue engineering applications should possess multifunctional properties such as biocompatibility, biodegradability and favorable mechanical properties as it comes in direct contact with the body fluids in vivo. Additionally, the polymer system should also possess biomimetic architecture and should support stem cell adhesion, proliferation and differentiation. As the progress in polymer technology continues, polymeric biomaterials have taken characteristics more closely related to that desired for tissue engineering and clinical needs. Stimuli responsive polymers also termed as smart biomaterials respond to stimuli such as pH, temperature, enzyme, antigen, glucose and electrical stimuli that are inherently present in living systems. This review highlights the exciting advancements in these polymeric systems that relate to biological and tissue engineering applications. Additionally, several aspects of technology namely scaffold fabrication methods and surface modifications to confer biological functionality to the polymers have also been discussed. The ultimate objective is to emphasize on these underutilized adaptive behaviors of the polymers so that novel applications and new generations of smart polymeric materials can be realized for biomedical and tissue engineering applications.


Wound Repair and Regeneration | 2013

Nanofibrous structured biomimetic strategies for skin tissue regeneration.

Venugopal Jayarama Reddy; Sridhar Radhakrishnan; Rajeswari Ravichandran; Shayanti Mukherjee; Ramalingam Balamurugan; Subramanian Sundarrajan; Seeram Ramakrishna

Mimicking porous topography of natural extracellular matrix is advantageous for successful regeneration of damaged tissues or organs. Nanotechnology being one of the most promising and growing technology today shows an extremely huge potential in the field of tissue engineering. Nanofibrous structures that mimic the native extracellular matrix and promote the adhesion of various cells are being developed as tissue‐engineered scaffolds for skin, bone, vasculature, heart, cornea, nervous system, and other tissues. A range of novel biocomposite materials has been developed to enhance the bioactive or therapeutic properties of these nanofibrous scaffolds via surface modifications, including the immobilization of functional cell‐adhesive ligands and bioactive molecules such as drugs, enzymes, and cytokines. In skin tissue engineering, usage of allogeneic skin is avoided to reestablish physiological continuity and also to address the challenge of curing acute and chronic wounds, which remains as the area of exploration with various biomimetic approaches. Two‐dimensional, three‐dimensional scaffolds and stem cells are presently used as dermal regeneration templates for the treatment of full‐thickness skin defects resulting from injuries and severe burns. The present review elaborates specifically on the fabrication of nanofibrous structured strategies for wound dressings, wound healing, and controlled release of growth factors for skin tissue regeneration.


Nanotechnology | 2012

Minimally invasive injectable short nanofibers of poly(glycerol sebacate) for cardiac tissue engineering

Rajeswari Ravichandran; Jayarama Reddy Venugopal; Subramanian Sundarrajan; Shayanti Mukherjee; Radhakrishnan Sridhar; Seeram Ramakrishna

Myocardial tissue lacks the ability to appreciably regenerate itself following myocardial infarction (MI) which ultimately results in heart failure. Current therapies can only retard the progression of disease and hence tissue engineering strategies are required to facilitate the engineering of a suitable biomaterial to repair MI. The aim of this study was to investigate the in vitro properties of an injectable biomaterial for the regeneration of infarcted myocardium. Fabrication of core/shell fibers was by co-axial electrospinning, with poly(glycerol sebacate) (PGS) as core material and poly-L-lactic acid (PLLA) as shell material. The PLLA was removed by treatment of the PGS/PLLA core/shell fibers with DCM:hexane (2:1) to obtain PGS short fibers. These PGS short fibers offer the advantage of providing a minimally invasive injectable technique for the regeneration of infarcted myocardium. The scaffolds were characterized by SEM, FTIR and contact angle and cell-scaffold interactions using cardiomyocytes. The results showed that the cardiac marker proteins actinin, troponin, myosin heavy chain and connexin 43 were expressed more on short PGS fibers compared to PLLA nanofibers. We hypothesized that the injection of cells along with short PGS fibers would increase cell transplant retention and survival within the infarct, compared to the standard cell injection system.


International Journal of Cardiology | 2013

Expression of cardiac proteins in neonatal cardiomyocytes on PGS/fibrinogen core/shell substrate for Cardiac tissue engineering

Rajeswari Ravichandran; Jayarama Reddy Venugopal; Subramanian Sundarrajan; Shayanti Mukherjee; Radhakrishnan Sridhar; Seeram Ramakrishna

BACKGROUND Heart failure due to myocardial infarction remains the leading cause of death worldwide owing to the inability of myocardial tissue regeneration. The aim of this study is to develop a core/shell fibrous cardiac patch having desirable mechanical properties and biocompatibility to engineer the infarcted myocardium. METHOD We fabricated poly(glycerol sebacate)/fibrinogen (PGS/fibrinogen) core/shell fibers with core as elastomeric PGS provides suitable mechanical properties comparable to that of native tissue and shell as fibrinogen to promote cell-biomaterial interactions. The PGS/fibrinogen core/shell fibers and fibrinogen nanofibers were characterized by SEM, contact angle and tensile testing to analyze the fiber morphology, wettability, and mechanical properties of the scaffold. The cell-scaffold interactions were analyzed using isolated neonatal cardiomyocytes for cell proliferation, confocal analysis for the expression of marker proteins α-actinin, Troponin-T, β-myosin heavy chain and connexin 43 and SEM analysis for cell morphology. RESULTS We observed PGS/fibrinogen core/shell fibers had a Youngs modulus of about 3.28 ± 1.7 MPa, which was comparable to that of native myocardium. Neonatal cardiomyocytes cultured on these scaffolds showed normal expression of cardiac specific marker proteins α-actinin, Troponin, β-myosin heavy chain and connexin 43 to prove PGS/fibrinogen core/shell fibers have potential for cardiac tissue engineering. CONCLUSION Results indicated that neonatal cardiomyocytes formed predominant gap junctions and expressed cardiac specific marker proteins on PGS/fibrinogen core/shell fibers compared to fibrinogen nanofibers, indicating PGS/fibrinogen core/shell fibers may serve as a suitable cardiac patch for the regeneration of infarcted myocardium.


Macromolecular Bioscience | 2013

Mimicking Native Extracellular Matrix with Phytic Acid‐Crosslinked Protein Nanofibers for Cardiac Tissue Engineering

Rajeswari Ravichandran; V. Seitz; Jayarama Reddy Venugopal; Radhakrishnan Sridhar; Subramanian Sundarrajan; Shayanti Mukherjee; E. Wintermantel; Seeram Ramakrishna

A functional scaffold fabricated is developed from natural polymers, favoring regeneration of the ischemic myocardium. Hemoglobin/gelatin/fibrinogen (Hb/gel/fib) nanofibers are fabricated by electrospinning and are characterized for morphology, scaffold composition, functional groups and hydrophilicity. It is hypothesized that ex vivo pretreatment of mesenchymal stem cells (MSCs) using 5-azacytidine and such a functional nanofibrous construct having a high oxygen-carrying potential could lead to enhanced cardiomyogenic differentiation of MSCs and result in superior biological and functional effects. The combination of a functional nanofibrous scaffold composed of natural polymers and crosslinked with a natural crosslinking agent, phytic acid, and stem cell biology may prove to be a novel therapeutic device for treatment of myocardial infarction.


World Journal of Cardiology | 2013

Cardiogenic differentiation of mesenchymal stem cells on elastomeric poly (glycerol sebacate)/collagen core/shell fibers

Rajeswari Ravichandran; Jayarama Reddy Venugopal; Subramanian Sundarrajan; Shayanti Mukherjee; Seeram Ramakrishna

AIM To facilitate engineering of suitable biomaterials to meet the challenges associated with myocardial infarction. METHODS Poly (glycerol sebacate)/collagen (PGS/collagen) core/shell fibers were fabricated by core/shell electrospinning technique, with core as PGS and shell as collagen polymer; and the scaffolds were characterized by scanning electron microscope (SEM), fourier transform infrared spectroscopy (FTIR), contact angle and tensile testing for cardiac tissue engineering. Collagen nanofibers were also fabricated by electrospinning for comparison with core/shell fibers. Studies on cell-scaffold interaction were carried out using cardiac cells and mesenchymal stem cells (MSCs) co-culture system with cardiac cells and MSCs separately serving as positive and negative controls respectively. The co-culture system was characterized for cell proliferation and differentiation of MSCs into cardiomyogenic lineage in the co-culture environment using dual immunocytochemistry. The co-culture cells were stained with cardiac specific marker proteins like actinin and troponin and MSC specific marker protein CD 105 for proving the cardiogenic differentiation of MSCs. Further the morphology of cells was analyzed using SEM. RESULTS PGS/collagen core/shell fibers, core is PGS polymer having an elastic modulus related to that of cardiac fibers and shell as collagen, providing natural environment for cellular activities like cell adhesion, proliferation and differentiation. SEM micrographs of electrospun fibrous scaffolds revealed porous, beadless, uniform fibers with a fiber diameter in the range of 380 ± 77 nm and 1192 ± 277 nm for collagen fibers and PGS/collagen core/shell fibers respectively. The obtained PGS/collagen core/shell fibrous scaffolds were hydrophilic having a water contact angle of 17.9 ± 4.6° compared to collagen nanofibers which had a contact angle value of 30 ± 3.2°. The PGS/collagen core/shell fibers had mechanical properties comparable to that of native heart muscle with a youngs modulus of 4.24 ± 0.7 MPa, while that of collagen nanofibers was comparatively higher around 30.11 ± 1.68 MPa. FTIR spectrum was performed to confirm the functional groups present in the electrospun scaffolds. Amide I and amide II of collagen were detected at 1638.95 cm(-1) and 1551.64 cm(-1) in the electrospun collagen fibers and at 1646.22 cm(-1) and 1540.73 cm(-1) for PGS/collagen core/shell fibers respectively. Cell culture studies performed using MSCs and cardiac cells co-culture environment, indicated that the cell proliferation significantly increased on PGS/collagen core/shell scaffolds compared to collagen fibers and the cardiac marker proteins actinin and troponin were expressed more on PGS/collagen core/shell scaffolds compared to collagen fibers alone. Dual immunofluorescent staining was performed to further confirm the cardiogenic differentiation of MSCs by employing MSC specific marker protein, CD 105 and cardiac specific marker protein, actinin. SEM observations of cardiac cells showed normal morphology on PGS/collagen fibers and providing adequate tensile strength for the regeneration of myocardial infarction. CONCLUSION Combination of PGS/collagen fibers and cardiac cells/MSCs co-culture system providing natural microenvironments to improve cell survival and differentiation, could bring cardiac tissue engineering to clinical application.


Macromolecular Bioscience | 2014

Gold Nanoparticle Loaded Hybrid Nanofibers for Cardiogenic Differentiation of Stem Cells for Infarcted Myocardium Regeneration

Rajeswari Ravichandran; Radhakrishnan Sridhar; Jayarama Reddy Venugopal; Subramanian Sundarrajan; Shayanti Mukherjee; Seeram Ramakrishna

Heart disease is the leading cause of mortality in many industrialized nations and is often related to irregularities in electrical function that can radically damage cardiac functioning. The aim of this study is to develop a novel therapeutic hybrid scaffold that can couple electrical, mechanical, and biological properties, desirable for cardiac tissue regeneration. BSA/PVA scaffolds are fabricated in the ratio 2:1 and gold nanoparticles (AuNPs) embedded scaffolds in the ratios BSA/PVA/Au of 2:1:0.1 (lower concentration) and BSA/PVA/Au of 2:1:0.4 (higher concentration) by electrospinning. The scaffolds are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), contact angle, Fourier transform infrared (FTIR) spectroscopy, and tensile testing to analyze the fiber morphology, AuNP distribution, hydrophilicity, surface functional groups, and mechanical properties of the scaffolds, respectively. Results show that ex vivo pretreatment of MSCs using 5-aza and AuNPs loaded conductive nanofibrous construct could lead to enhanced cardiomyogenic differentiation and result in superior biological and functional effects on infarcted myocardium regeneration.

Collaboration


Dive into the Shayanti Mukherjee's collaboration.

Top Co-Authors

Avatar

Seeram Ramakrishna

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Rajeswari Ravichandran

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Jayarama Reddy Venugopal

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Subramanian Sundarrajan

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Michael Raghunath

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Radhakrishnan Sridhar

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Venugopal Jayarama Reddy

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Aleksander Góra

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Damian Pliszka

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Molamma P. Prabhakaran

National University of Singapore

View shared research outputs
Researchain Logo
Decentralizing Knowledge