Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sheene Kim is active.

Publication


Featured researches published by Sheene Kim.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Continuous fat oxidation in acetyl–CoA carboxylase 2 knockout mice increases total energy expenditure, reduces fat mass, and improves insulin sensitivity

Cheol Soo Choi; David B. Savage; Lutfi Abu-Elheiga; Zhen-Xiang Liu; Sheene Kim; Ameya Kulkarni; Alberto Distefano; Yu-Jin Hwang; Richard M. Reznick; Roberto Codella; Dongyan Zhang; Gary W. Cline; Salih J. Wakil; Gerald I. Shulman

Acetyl–CoA carboxylase 2 (ACC)2 is a key regulator of mitochondrial fat oxidation. To examine the impact of ACC2 deletion on whole-body energy metabolism, we measured changes in substrate oxidation and total energy expenditure in Acc2−/− and WT control mice fed either regular or high-fat diets. To determine insulin action in vivo, we also measured whole-body insulin-stimulated liver and muscle glucose metabolism during a hyperinsulinemic–euglycemic clamp in Acc2−/− and WT control mice fed a high-fat diet. Contrary to previous studies that have suggested that increased fat oxidation might result in lower glucose oxidation, both fat and carbohydrate oxidation were simultaneously increased in Acc2−/− mice. This increase in both fat and carbohydrate oxidation resulted in an increase in total energy expenditure, reductions in fat and lean body mass and prevention from diet-induced obesity. Furthermore, Acc2−/− mice were protected from fat-induced peripheral and hepatic insulin resistance. These improvements in insulin-stimulated glucose metabolism were associated with reduced diacylglycerol content in muscle and liver, decreased PKCθ activity in muscle and PKCε activity in liver, and increased insulin-stimulated Akt2 activity in these tissues. Taken together with previous work demonstrating that Acc2−/− mice have a normal lifespan, these data suggest that Acc2 inhibition is a viable therapeutic option for the treatment of obesity and type 2 diabetes.


Journal of Clinical Investigation | 2007

Abnormal glucose homeostasis in skeletal muscle–specific PGC-1α knockout mice reveals skeletal muscle–pancreatic β cell crosstalk

Christoph Handschin; Cheol Soo Choi; Sherry Chin; Sheene Kim; Dan Kawamori; Amarnath J. Kurpad; Nicole Neubauer; Jiang Hu; Vamsi K. Mootha; Young-Bum Kim; Rohit N. Kulkarni; Gerald I. Shulman; Bruce M. Spiegelman

The transcriptional coactivator PPARgamma coactivator 1alpha (PGC-1alpha) is a strong activator of mitochondrial biogenesis and oxidative metabolism. While expression of PGC-1alpha and many of its mitochondrial target genes are decreased in the skeletal muscle of patients with type 2 diabetes, no causal relationship between decreased PGC-1alpha expression and abnormal glucose metabolism has been established. To address this question, we generated skeletal muscle-specific PGC-1alpha knockout mice (MKOs), which developed significantly impaired glucose tolerance but showed normal peripheral insulin sensitivity. Surprisingly, MKOs had expanded pancreatic beta cell mass, but markedly reduced plasma insulin levels, in both fed and fasted conditions. Muscle tissue from MKOs showed increased expression of several proinflammatory genes, and these mice also had elevated levels of the circulating IL-6. We further demonstrated that IL-6 treatment of isolated mouse islets suppressed glucose-stimulated insulin secretion. These data clearly illustrate a causal role for muscle PGC-1alpha in maintenance of glucose homeostasis and highlight an unexpected cytokine-mediated crosstalk between skeletal muscle and pancreatic islets.


Journal of Biological Chemistry | 2007

Suppression of Diacylglycerol Acyltransferase-2 (DGAT2), but Not DGAT1, with Antisense Oligonucleotides Reverses Diet-induced Hepatic Steatosis and Insulin Resistance

Cheol Soo Choi; David B. Savage; Ameya Kulkarni; Xing Xian Yu; Zhen-Xiang Liu; Katsutaro Morino; Sheene Kim; Alberto Distefano; Varman T. Samuel; Susanne Neschen; Dongyan Zhang; Amy Wang; Xian-Man Zhang; Mario Kahn; Gary W. Cline; Sanjay K. Pandey; John G. Geisler; Sanjay Bhanot; Brett P. Monia; Gerald I. Shulman

Nonalcoholic fatty liver disease (NAFLD) is a major contributing factor to hepatic insulin resistance in type 2 diabetes. Diacylglycerol acyltransferase (Dgat), of which there are two isoforms (Dgat1 and Dgat2), catalyzes the final step in triglyceride synthesis. We evaluated the metabolic impact of pharmacological reduction of DGAT1 and -2 expression in liver and fat using antisense oligonucleotides (ASOs) in rats with diet-induced NAFLD. Dgat1 and Dgat2 ASO treatment selectively reduced DGAT1 and DGAT2 mRNA levels in liver and fat, but only Dgat2 ASO treatment significantly reduced hepatic lipids (diacylglycerol and triglyceride but not long chain acyl CoAs) and improved hepatic insulin sensitivity. Because Dgat catalyzes triglyceride synthesis from diacylglycerol, and because we have hypothesized that diacylglycerol accumulation triggers fat-induced hepatic insulin resistance through protein kinase Cϵ activation, we next sought to understand the paradoxical reduction in diacylglycerol in Dgat2 ASO-treated rats. Within 3 days of starting Dgat2 ASO therapy in high fat-fed rats, plasma fatty acids increased, whereas hepatic lysophosphatidic acid and diacylglycerol levels were similar to those of control rats. These changes were associated with reduced expression of lipogenic genes (SREBP1c, ACC1, SCD1, and mtGPAT) and increased expression of oxidative/thermogenic genes (CPT1 and UCP2). Taken together, these data suggest that knocking down Dgat2 protects against fat-induced hepatic insulin resistance by paradoxically lowering hepatic diacylglycerol content and protein kinase Cϵ activation through decreased SREBP1c-mediated lipogenesis and increased hepatic fatty acid oxidation.


Nature Medicine | 2008

Dual role of proapoptotic BAD in insulin secretion and beta cell survival

Nika N. Danial; Loren D. Walensky; Chen-Yu Zhang; Cheol Soo Choi; Jill K. Fisher; Anthony J A Molina; Sandeep Robert Datta; Kenneth Pitter; Gregory H. Bird; Jakob D. Wikstrom; J T Deeney; Kirsten Robertson; Joel Morash; Ameya Kulkarni; Susanne Neschen; Sheene Kim; Michael E. Greenberg; Barbara E. Corkey; Orian S. Shirihai; Gerald I. Shulman; Bradford B. Lowell; Stanley J. Korsmeyer

The proapoptotic BCL-2 family member BAD resides in a glucokinase-containing complex that regulates glucose-driven mitochondrial respiration. Here, we present genetic evidence of a physiologic role for BAD in glucose-stimulated insulin secretion by beta cells. This novel function of BAD is specifically dependent upon the phosphorylation of its BH3 sequence, previously defined as an essential death domain. We highlight the pharmacologic relevance of phosphorylated BAD BH3 by using cell-permeable, hydrocarbon-stapled BAD BH3 helices that target glucokinase, restore glucose-driven mitochondrial respiration and correct the insulin secretory response in Bad-deficient islets. Our studies uncover an alternative target and function for the BAD BH3 domain and emphasize the therapeutic potential of phosphorylated BAD BH3 mimetics in selectively restoring beta cell function. Furthermore, we show that BAD regulates the physiologic adaptation of beta cell mass during high-fat feeding. Our findings provide genetic proof of the bifunctional activities of BAD in both beta cell survival and insulin secretion.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Paradoxical effects of increased expression of PGC-1α on muscle mitochondrial function and insulin-stimulated muscle glucose metabolism

Cheol Soo Choi; Douglas E. Befroy; Roberto Codella; Sheene Kim; Richard M. Reznick; Yu-Jin Hwang; Zhen-Xiang Liu; Hui-Young Lee; Alberto Distefano; Varman T. Samuel; Dongyan Zhang; Gary W. Cline; Christoph Handschin; Jiandie Lin; Kitt Falk Petersen; Bruce M. Spiegelman; Gerald I. Shulman

Peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α has been shown to play critical roles in regulating mitochondria biogenesis, respiration, and muscle oxidative phenotype. Furthermore, reductions in the expression of PGC-1α in muscle have been implicated in the pathogenesis of type 2 diabetes. To determine the effect of increased muscle-specific PGC-1α expression on muscle mitochondrial function and glucose and lipid metabolism in vivo, we examined body composition, energy balance, and liver and muscle insulin sensitivity by hyperinsulinemic-euglycemic clamp studies and muscle energetics by using 31P magnetic resonance spectroscopy in transgenic mice. Increased expression of PGC-1α in muscle resulted in a 2.4-fold increase in mitochondrial density, which was associated with an ≈60% increase in the unidirectional rate of ATP synthesis. Surprisingly, there was no effect of increased muscle PGC-1α expression on whole-body energy expenditure, and PGC-1α transgenic mice were more prone to fat-induced insulin resistance because of decreased insulin-stimulated muscle glucose uptake. The reduced insulin-stimulated muscle glucose uptake could most likely be attributed to a relative increase in fatty acid delivery/triglyceride reesterfication, as reflected by increased expression of CD36, acyl-CoA:diacylglycerol acyltransferase1, and mitochondrial acyl-CoA:glycerol-sn-3-phosphate acyltransferase, that may have exceeded mitochondrial fatty acid oxidation, resulting in increased intracellular lipid accumulation and an increase in the membrane to cytosol diacylglycerol content. This, in turn, caused activation of PKCθ, decreased insulin signaling at the level of insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation, and skeletal muscle insulin resistance.


Journal of Clinical Investigation | 2007

Overexpression of uncoupling protein 3 in skeletal muscle protects against fat-induced insulin resistance

Cheol Soo Choi; Jonathan J. Fillmore; Jason K. Kim; Zhen-Xiang Liu; Sheene Kim; Emily F. Collier; Ameya Kulkarni; Alberto Distefano; Yu-Jin Hwang; Mario Kahn; Yan Chen; Chunli Yu; Irene K. Moore; Richard M. Reznick; Takamasa Higashimori; Gerald I. Shulman

Insulin resistance is a major factor in the pathogenesis of type 2 diabetes and is strongly associated with obesity. Increased concentrations of intracellular fatty acid metabolites have been postulated to interfere with insulin signaling by activation of a serine kinase cascade involving PKCtheta in skeletal muscle. Uncoupling protein 3 (UCP3) has been postulated to dissipate the mitochondrial proton gradient and cause metabolic inefficiency. We therefore hypothesized that overexpression of UCP3 in skeletal muscle might protect against fat-induced insulin resistance in muscle by conversion of intramyocellular fat into thermal energy. Wild-type mice fed a high-fat diet were markedly insulin resistant, a result of defects in insulin-stimulated glucose uptake in skeletal muscle and hepatic insulin resistance. Insulin resistance in these tissues was associated with reduced insulin-stimulated insulin receptor substrate 1- (IRS-1-) and IRS-2-associated PI3K activity in muscle and liver, respectively. In contrast, UCP3-overexpressing mice were completely protected against fat-induced defects in insulin signaling and action in these tissues. Furthermore, these changes were associated with a lower membrane-to-cytosolic ratio of diacylglycerol and reduced PKCtheta activity in whole-body fat-matched UCP3 transgenic mice. These results suggest that increasing mitochondrial uncoupling in skeletal muscle may be an excellent therapeutic target for type 2 diabetes mellitus.


Journal of Clinical Investigation | 2007

Muscle-specific knockout of PKC-λ impairs glucose transport and induces metabolic and diabetic syndromes

Robert V. Farese; Mini P. Sajan; Hong Yang; Pengfei Li; Steven Mastorides; William R. Gower; Sonali Nimal; Cheol Soo Choi; Sheene Kim; Gerald I. Shulman; C. Ronald Kahn; Ursula Braun; Michael Leitges

Obesity, the metabolic syndrome, and type 2 diabetes mellitus (T2DM) are major global health problems. Insulin resistance is frequently present in these disorders, but the causes and effects of such resistance are unknown. Here, we generated mice with muscle-specific knockout of the major murine atypical PKC (aPKC), PKC-λ, a postulated mediator for insulin-stimulated glucose transport. Glucose transport and translocation of glucose transporter 4 (GLUT4) to the plasma membrane were diminished in muscles of both homozygous and heterozygous PKC-λ knockout mice and were accompanied by systemic insulin resistance; impaired glucose tolerance or diabetes; islet β cell hyperplasia; abdominal adiposity; hepatosteatosis; elevated serum triglycerides, FFAs, and LDL-cholesterol; and diminished HDL-cholesterol. In contrast to the defective activation of muscle aPKC, insulin signaling and actions were intact in muscle, liver, and adipocytes. These findings demonstrate the importance of aPKC in insulin-stimulated glucose transport in muscles of intact mice and show that insulin resistance and resultant hyperinsulinemia owing to a specific defect in muscle aPKC is sufficient to induce abdominal obesity and other lipid abnormalities of the metabolic syndrome and T2DM. These findings are particularly relevant because humans who have obesity, impaired glucose tolerance, and T2DM reportedly have defective activation and/or diminished levels of muscle aPKC.


Diabetes | 2008

Resistance to High-Fat Diet–Induced Obesity but Exacerbated Insulin Resistance in Mice Overexpressing Preadipocyte Factor-1 (Pref-1): A New Model of Partial Lipodystrophy

Josep A. Villena; Cheol Soo Choi; Yuhui Wang; Sheene Kim; Yujin Hwang; Young-Bum Kim; Gary W. Cline; Gerald I. Shulman; Hei Sook Sul

OBJECTIVE—White adipose tissue is a critical regulator of whole-body glucose metabolism. Preadipocyte factor-1 (Pref-1) is a secreted protein that inhibits adipocyte differentiation, both in vitro and in vivo. In this study, we have investigated the effects of Pref-1 overexpression on whole-body glucose homeostasis and its contribution to the development of insulin resistance. RESEARCH DESIGN AND METHODS—To gain insight into the role of Pref-1 on the onset of insulin resistance and type 2 diabetes, we measured body composition and whole-body insulin-stimulated glucose metabolism during a hyperinsulinemic-euglycemic clamp in Pref-1 transgenic and wild-type control mice fed a high-fat diet. RESULTS—Mice overexpressing Pref-1 were resistant to high-fat diet–induced obesity, as reflected by a marked reduction in adipose tissue mass. However, Pref-1–overexpressing mice were severely insulin resistant, mainly because of a reduction in insulin-stimulated glucose uptake in skeletal muscle and adipose tissue. The aggravated insulin resistance was associated with impaired insulin signaling and increased diacylglycerol content in skeletal muscle. CONCLUSIONS—Mice overexpressing Pref-1 are insulin resistant despite being protected from diet-induced obesity and may provide a new rodent model for the study of lipodystrophic disorders.


Diabetes | 2008

Resistance to high fat diet-induced obesity but exacerbated insulin resistance in mice overexpressing Pref-1: a new model of partial lipodystrophy

Josep A. Villena; Cheol Soo Choi; Yuhui Wang; Sheene Kim; Yujin Hwang; Young-Bum Kim; Gary W. Cline; Gerald I. Shulman; Hei Sook Sul

OBJECTIVE—White adipose tissue is a critical regulator of whole-body glucose metabolism. Preadipocyte factor-1 (Pref-1) is a secreted protein that inhibits adipocyte differentiation, both in vitro and in vivo. In this study, we have investigated the effects of Pref-1 overexpression on whole-body glucose homeostasis and its contribution to the development of insulin resistance. RESEARCH DESIGN AND METHODS—To gain insight into the role of Pref-1 on the onset of insulin resistance and type 2 diabetes, we measured body composition and whole-body insulin-stimulated glucose metabolism during a hyperinsulinemic-euglycemic clamp in Pref-1 transgenic and wild-type control mice fed a high-fat diet. RESULTS—Mice overexpressing Pref-1 were resistant to high-fat diet–induced obesity, as reflected by a marked reduction in adipose tissue mass. However, Pref-1–overexpressing mice were severely insulin resistant, mainly because of a reduction in insulin-stimulated glucose uptake in skeletal muscle and adipose tissue. The aggravated insulin resistance was associated with impaired insulin signaling and increased diacylglycerol content in skeletal muscle. CONCLUSIONS—Mice overexpressing Pref-1 are insulin resistant despite being protected from diet-induced obesity and may provide a new rodent model for the study of lipodystrophic disorders.


PLOS Medicine | 2008

Correction: A prevalent variant in PPP1R3A impairs glycogen synthesis and reduces muscle glycogen content in humans and mice

David B. Savage; Lanmin Zhai; Balasubramanian Ravikumar; Cheol Soo Choi; J. E. M. Snaar; Amanda C McGuire; Sung-Eun Wou; Gemma Medina-Gomez; Sheene Kim; Cheryl B. Bock; Dyann M. Segvich; Bhavana Solanky; Dinesh K. Deelchand; Antonio Vidal-Puig; Nicholas J. Wareham; Gerald I. Shulman; Fredrik Karpe; Roy Taylor; Bartholomew A. Pederson; Peter J. Roach; Stephen O'Rahilly

Background Stored glycogen is an important source of energy for skeletal muscle. Human genetic disorders primarily affecting skeletal muscle glycogen turnover are well-recognised, but rare. We previously reported that a frameshift/premature stop mutation in PPP1R3A, the gene encoding RGL, a key regulator of muscle glycogen metabolism, was present in 1.36% of participants from a population of white individuals in the UK. However, the functional implications of the mutation were not known. The objective of this study was to characterise the molecular and physiological consequences of this genetic variant. Methods and Findings In this study we found a similar prevalence of the variant in an independent UK white population of 744 participants (1.46%) and, using in vivo 13C magnetic resonance spectroscopy studies, demonstrate that human carriers (n = 6) of the variant have low basal (65% lower, p = 0.002) and postprandial muscle glycogen levels. Mice engineered to express the equivalent mutation had similarly decreased muscle glycogen levels (40% lower in heterozygous knock-in mice, p < 0.05). In muscle tissue from these mice, failure of the truncated mutant to bind glycogen and colocalize with glycogen synthase (GS) decreased GS and increased glycogen phosphorylase activity states, which account for the decreased glycogen content. Conclusions Thus, PPP1R3A C1984ΔAG (stop codon 668) is, to our knowledge, the first prevalent mutation described that directly impairs glycogen synthesis and decreases glycogen levels in human skeletal muscle. The fact that it is present in ∼1 in 70 UK whites increases the potential biomedical relevance of these observations.

Collaboration


Dive into the Sheene Kim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Young-Bum Kim

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge