Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sheila C. Barton is active.

Publication


Featured researches published by Sheila C. Barton.


Nature | 2005

Blimp1 is a critical determinant of the germ cell lineage in mice

Yasuhide Ohinata; Bernhard Payer; Dónal O'Carroll; Katia Ancelin; Yukiko Ono; Mitsue Sano; Sheila C. Barton; Tetyana V. Obukhanych; Michel C. Nussenzweig; Alexander Tarakhovsky; Mitinori Saitou; M. Azim Surani

Germ cell fate in mice is induced in pluripotent epiblast cells in response to signals from extraembryonic tissues. The specification of approximately 40 founder primordial germ cells and their segregation from somatic neighbours are important events in early development. We have proposed that a critical event during this specification includes repression of a somatic programme that is adopted by neighbouring cells. Here we show that Blimp1 (also known as Prdm1), a known transcriptional repressor, has a critical role in the foundation of the mouse germ cell lineage, as its disruption causes a block early in the process of primordial germ cell formation. Blimp1-deficient mutant embryos form a tight cluster of about 20 primordial germ cell-like cells, which fail to show the characteristic migration, proliferation and consistent repression of homeobox genes that normally accompany specification of primordial germ cells. Furthermore, our genetic lineage-tracing experiments indicate that the Blimp1-positive cells originating from the proximal posterior epiblast cells are indeed the lineage-restricted primordial germ cell precursors.


Nature | 2002

A molecular programme for the specification of germ cell fate in mice

Mitinori Saitou; Sheila C. Barton; M. Azim Surani

Germ cell fate in mice is induced in proximal epiblast cells by the extra-embryonic ectoderm, and is not acquired through the inheritance of any preformed germ plasm. To determine precisely how germ cells are specified, we performed a genetic screen between single nascent germ cells and their somatic neighbours that share common ancestry. Here we show that fragilis, an interferon-inducible transmembrane protein, marks the onset of germ cell competence, and we propose that through homotypic association, it demarcates germ cells from somatic neighbours. Using single-cell gene expression profiles, we also show that only those cells with the highest expression of fragilis subsequently express stella, a gene that we detected exclusively in lineage-restricted germ cells. The stella positive nascent germ cells exhibit repression of homeobox genes, which may explain their escape from a somatic cell fate and the retention of pluripotency.


Nature Genetics | 1998

Abnormal maternal behaviour and growth retardation associated with loss of the imprinted gene Mest

Louis Lefebvre; Stéphane Viville; Sheila C. Barton; Fumitoshi Ishino; Eric B. Keverne; M. Azim Surani

Mest (also known as Peg1), an imprinted gene expressed only from the paternal allele during development, was disrupted by gene targeting in embryonic stem (ES) cells. The targeted mutation is imprinted and reversibly silenced by passage through the female germ line. Paternal transmission activates the targeted allele and causes embryonic growth retardation associated with reduced postnatal survival rates in mutant progeny. More significantly, Mest-deficient females show abnormal maternal behaviour and impaired placentophagia, a distinctive mammalian behaviour. Our results provide evidence for the involvement of an imprinted gene in the control of adult behaviour.


Nature | 2000

Eomesodermin is required for mouse trophoblast development and mesoderm formation.

Andreas Russ; Sigrid Wattler; William H. Colledge; Samuel Aparicio; Mark B. L. Carlton; Jonathan J.H. Pearce; Sheila C. Barton; M. Azim Surani; Kenneth Ryan; Michael Nehls; Valerie Wilson; Martin J. Evans

The earliest cell fate decision in the mammalian embryo separates the extra-embryonic trophoblast lineage, which forms the fetal portion of the placenta, from the embryonic cell lineages. The body plan of the embryo proper is established only later at gastrulation, when the pluripotent epiblast gives rise to the germ layers ectoderm, mesoderm and endoderm. Here we show that the T-box gene Eomesodermin performs essential functions in both trophoblast development and gastrulation. Mouse embryos lacking Eomesodermin arrest at the blastocyst stage. Mutant trophoectoderm does not differentiate into trophoblast, indicating that Eomesodermin may be required for the development of trophoblast stem cells. In the embryo proper, Eomesodermin is essential for mesoderm formation. Although the specification of the anterior–posterior axis and the initial response to mesoderm-inducing signals is intact in mutant epiblasts, the prospective mesodermal cells are not recruited into the primitive streak. Our results indicate that Eomesodermin defines a conserved molecular pathway controlling the morphogenetic movements of germ layer formation and has acquired a new function in mammals in the differentiation of trophoblast.


The EMBO Journal | 1997

Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells

Masako Tada; Takashi Tada; Louis Lefebvre; Sheila C. Barton; M. Azim Surani

Genomic reprogramming of primordial germ cells (PGCs), which includes genome‐wide demethylation, prevents aberrant epigenetic modifications from being transmitted to subsequent generations. This process also ensures that homologous chromosomes first acquire an identical epigenetic status before an appropriate switch in the imprintable loci in the female and male germ lines. Embryonic germ (EG) cells have a similar epigenotype to PGCs from which they are derived. We used EG cells to investigate the mechanism of epigenetic modifications in the germ line by analysing the effects on a somatic nucleus in the EG‐thymic lymphocyte hybrid cells. There were striking changes in methylation of the somatic nucleus, resulting in demethylation of several imprinted and non‐imprinted genes. These epigenetic modifications were heritable and affected gene expression as judged by re‐activation of the silent maternal allele of Peg1/Mest imprinted gene in the somatic nucleus. This remarkable change in the epigenotype of the somatic nucleus is consistent with the observed pluripotency of the EG‐somatic hybrid cells as they differentiated into a variety of tissues in chimeric embryos. The epigenetic modifications observed in EG‐somatic cell hybrids in vitro are comparable to the reprogramming events that occur during germ cell development.


Nucleic Acids Research | 2006

MicroRNA expression profiling of single whole embryonic stem cells

Fuchou Tang; Petra Hajkova; Sheila C. Barton; Kaiqin Lao; M. Azim Surani

MicroRNAs (miRNAs) are a class of 17–25 nt non-coding RNAs that have been shown to have critical functions in a wide variety of biological processes during development. Recently developed miRNA microarray techniques have helped to accelerate research on miRNAs. However, in some instances there is only a limited amount of material available for analysis, which requires more sensitive techniques that can preferably work on single cells. Here we demonstrate that it is possible to analyse miRNA in single cells by using a real-time PCR-based 220-plex miRNA expression profiling method. Development of this technique will greatly facilitate miRNA-related research on cells, such as the founder population of primordial germ cells where rapid and dynamic changes occur in a few cells, and for analysing heterogeneous population of cells. In these and similar cases, our method of single cell analysis is critical for elucidating the diverse roles of miRNAs.


Cell | 1986

Nuclear transplantation in the mouse: Heritable differences between parental genomes after activation of the embryonic genome

M.A.H. Surani; Sheila C. Barton; M.L. Norris

Paternal and maternal genomes apparently have complementary roles during embryogenesis in the mouse, and both are essential for development to term. However, there is no direct evidence to show that functional differences between parental genomes remain intact after activation of the embryonic genome at the 2-cell stage. In this study we demonstrate that transfer of paternal or maternal nuclei from early haploid preimplantation embryos back to fertilized eggs from which one pronucleus was removed resulted in development to term, but only if the remaining pronucleus was of the parental type opposite to the donor nucleus. Hence, functional differences between parental chromosomes are heritable and they survive activation of the embryonic genome and probable reprogramming of donor embryonic nuclei by epigenetic factors in the egg cytoplasm.


Nature Genetics | 1995

Peg1/Mest imprinted gene on chromosome 6 identified by cDNA subtraction hybridization

Tomoko Kaneko-Ishino; Yoshimi Kuroiwa; Naoki Miyoshi; Takashi Kohda; Rika Suzuki; Minesuke Yokoyama; Stéphane Viville; Sheila C. Barton; Fumitoshi Ishino; Surani Ma

Parthenogenesis in the mouse is embryonic lethal partly because of imprinted genes that are expressed only from the paternal genome. In a systematic screen using subtraction hybridization between cDNAs from normal and parthenogenetic embryos, we initially identified two apparently novel imprinted genes, Peg1 and Peg3. Peg1 (paternally expressed gene 1) or Mest, the first imprinted gene found on the mouse chromosome 6, may contribute to the lethality of parthenogenones and of embryos with a maternal duplication for the proximal chromosome 6. Peg1/Mest is widely expressed in mesodermal tissues and belongs to the alpha/beta hydrolase fold family. A similar approach with androgenones can be used to identify imprinted genes that are expressed from the maternal genome only.


Cell | 1994

Imprinting and X chromosome counting mechanisms determine Xist expression in early mouse development

Graham F. Kay; Sheila C. Barton; M. Azim Surani; Sohaila Rastan

In mice, X inactivation is preceded by in cis Xist expression. Initially, normal female embryos express the paternal Xist allele exclusively, preceding imprinted X inactivation in the trophectoderm. Later expression of Xist alleles is random, preceding random X inactivation in the epiblast lineage. In this study using uniparental embryos, we demonstrate that Xist expression is initially dictated solely by parental imprinting, causing expression of all paternal alleles. Maternal alleles remain repressed, irrespective of X chromosome number. At the compacting morula stage, this parental imprint is erased, and the mechanism counting the X chromosomes imposes appropriate Xist expression with respect to chromosome number. Our results also suggest that Xist expression may itself be regulated by a novel imprinted maternally expressed gene.


Development Genes and Evolution | 1998

Epigenotype switching of imprintable loci in embryonic germ cells.

Takashi Tada; Masako Tada; Kathy Hilton; Sheila C. Barton; Takashi Sado; Nobuo Takagi; M. A. Surani

Abstract Expression of imprinted genes is dependent on their parental origin. This is reflected in the heritable differential methylation of parental alleles. The gametic imprints are however reversible as they do not endure for more than one generation. To investigate if the epigenetic changes in male and female germ line are similar or not, we derived embryonic germ (EG) cells from primordial germ cells (PGCs) of day 11.5 and 12.5 male and female embryos. The results demonstrate that they have an equivalent epigenotype. First, chimeras made with EG cells derived from both male and female embryos showed comparable fetal overgrowth and skeletal abnormalities, which are similar to but less severe than those induced by androgenetic embryonic stem (ES) cells. Thus, EG cells derived from female embryos resemble androgenetic ES cells more than parthenogenetic cells. Furthermore, the methylation status of both alleles of a number of loci in EG cells was similar to that of the paternal allele in normal somatic cells. Hence, both alleles of Igf2r region 2, Peg1/Mest, Peg3, Nnat were consistently unmethylated in EG cells as well as in the primary embryonic fibroblasts (PEFs) rescued from chimeras. More strikingly, both alleles of p57kip2 that were also unmethylated in EG cells, underwent de novo methylation in PEFs to resemble a paternal allele in somatic cells. The exceptions were the H19 and Igf2 genes that retained the methylation pattern in PEFs as seen in normal somatic tissues. These studies suggest that the initial epigenetic changes in germ cells of male and female embryos are similar.

Collaboration


Dive into the Sheila C. Barton's collaboration.

Top Co-Authors

Avatar

M. Azim Surani

Wellcome Trust/Cancer Research UK Gurdon Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M.A. Surani

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fumitoshi Ishino

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kathy Hilton

University of Cambridge

View shared research outputs
Researchain Logo
Decentralizing Knowledge