Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sheila F. Murphy is active.

Publication


Featured researches published by Sheila F. Murphy.


Geochimica et Cosmochimica Acta | 1998

CHEMICAL WEATHERING IN A TROPICAL WATERSHED, LUQUILLO MOUNTAINS, PUERTO RICO : I. LONG-TERM VERSUS SHORT-TERM WEATHERING FLUXES

Art F. White; Alex E. Blum; Marjorie S. Schulz; Davison V. Vivit; David A. Stonestrom; Matthew C. Larsen; Sheila F. Murphy; Dennis D. Eberl

Abstract The pristine Rio Icacos watershed in the Luquillo Mountains in eastern Puerto Rico has the fastest documented weathering rate of silicate rocks on the Earth’s surface. A regolith propagation rate of 58 m Ma−1, calculated from iso-volumetric saprolite formation from quartz diorite, is comparable to the estimated denudation rate (25–50 Ma−1) but is an order of magnitude faster than the global average weathering rate (6 Ma−1). Weathering occurs in two distinct environments; plagioclase and hornblende react at the saprock interface and biotite and quartz weather in the overlying thick saprolitic regolith. These environments produce distinctly different water chemistries, with K, Mg, and Si increasing linearly with depth in saprolite porewaters and with stream waters dominated by Ca, Na, and Si. Such differences are atypical of less intense weathering in temperate watersheds. Porewater chemistry in the shallow regolith is controlled by closed-system recycling of inorganic nutrients such as K. Long-term elemental fluxes through the regolith (e.g., Si = 1.7 × 10−8 moles m−2 s−1) are calculated from mass losses based on changes in porosity and chemistry between the regolith and bedrock and from the age of the regolith surface (200 Ma). Mass losses attributed to solute fluxes are determined using a step-wise infiltration model which calculates mineral inputs to the shallow and deep saprolite porewaters and to stream water. Pressure heads decrease with depth in the shallow regolith (−2.03 m H2O m−1), indicating that both increasing capillary tension and graviometric potential control porewater infiltration. Interpolation of experimental hydraulic conductivities produces an infiltration rate of 1 m yr−1 at average field moisture saturation which is comparable with LiBr tracer tests and with base discharge from the watershed. Short term weathering fluxes calculated from solute chemistries and infiltration rates (e.g., Si = 1.4 × 10−8 moles m−2 s−1) are compared to watershed flux rates (e.g., Si = 2.7 × 10−8 moles m−2 s−1). Consistency between three independently determined sets of weathering fluxes imply that possible changes in precipitation, temperature, and vegetation over the last several hundred thousand years have not significantly impacted weathering rates in the Luquillo Mountains of Puerto Rico. This has important ramifications for tropical environments and global climate change.


Geochimica et Cosmochimica Acta | 1998

Chemical Weathering in a Tropical Watershed, Luquillo Mountains, Puerto Rico: II. Rate and Mechanism of Biotite Weathering

Sheila F. Murphy; Susan L. Brantley; Alex E. Blum; Art F. White; Hailiang Dong

Abstract Samples of soil, saprolite, bedrock, and porewater from a lower montane wet forest, the Luquillo Experimental Forest (LEF) in Puerto Rico, were studied to investigate the rates and mechanisms of biotite weathering. The soil profile, at the top of a ridge in the Rio Icacos watershed, consists of a 50–100-cm thick layer of unstructured soil above a 600–800 cm thick saprolite developed on quartz diorite. The only minerals present in significant concentration within the soil and saprolite are biotite, quartz, kaolinite, and iron oxides. Biotite is the only primary silicate releasing significant K and Mg to porewaters. Although biotite in samples of the quartz diorite bedrock is extensively chloritized, chlorite is almost entirely absent in the saprolite phyllosilicates. Phyllosilicate grains are present as 200–1000 μm wide books below about 50 cm depth. X-ray diffraction (XRD) and electron microprobe analyses indicate that the phyllosilicate grains contain a core of biotite surrounded by variable amounts of kaolinite. Lattice fringe images under transmission electron microscope (TEM) show single layers of biotite altering to two layers of kaolinite, suggesting dissolution of biotite and precipitation of kaolinite at discrete boundaries. Some single 14-A layers are also observed in the biotite under TEM. The degree of kaolinitization of individual phyllosilicate grains as observed by TEM decreases with depth in the saprolite. This TEM work is the first such microstructural evidence of epitaxial growth of kaolinite onto biotite during alteration in low-temperature environments. The rate of release of Mg in the profile, calculated as a flux through the soil normalized per watershed land area, is approximately 500 mol hectare−1 yr−1 (1.6 × 10−9 molMg msoil−2 s−1). This rate is similar to the flux estimated from Mg discharge out the Rio Icacos (1000 mol hectare−1 yr−1, or 3.5 × 10−9 molMg msoil−2 s−1), indicating that scaling up from the soil to the watershed is possible for Mg release. The rate of Mg release from biotite, normalized to Brunauer-Emmett-Teller (BET) surface area, is calculated using a mass balance equation which includes the density and volume of phyllosilicate grains, porewater chemistry and flux, and soil porosity. The mean rates of biotite weathering calculated from K and Mg release rates are approximately 6 and 11 × 10−16 molbiotite mbiotite−2 s−1 respectively, significantly slower than laboratory rates (10−12 to 10−11 molbiotite mbiotite−2 s−1). The discrepancy in scaling down from the soil to the laboratory is probably explained by (1) differences in weathering mechanism between the two environments, (2) higher solute concentrations in soil porewaters, (3) loss of reactive surface area of biotite in the saprolite due to kaolinite and iron oxide coatings, and/or (4) unaccounted-for heterogeneities in flow path through the soil.


Geochimica et Cosmochimica Acta | 1998

TEM study of progressive alteration of igneous biotite to kaolinite throughout a weathered soil profile

Hailiang Dong; Donald R. Peacor; Sheila F. Murphy

Abstract TEM characterization of progressive alteration of igneous biotite to kaolinite throughout a weathered soil profile was carried out to study the mechanisms of the reaction from biotite to kaolinite. A biotite-like phase with d (001) ≅ 10.5 A but with a higher Al/Si ratio and lower Fe, Mg, and K contents forms as a first, intermediate alteration product of igneous biotite. This phase is referred to as altered biotite. Two different alteration mechanisms are responsible for the altered biotite-kaolinite reaction: (1) reaction of one layer of altered biotite to form two layers of kaolinite and (2) transition of one layer of altered biotite to one layer of halloysite, which subsequently reacted to form one layer of kaolinite. Metastable intermediate altered biotite and halloysite form at low temperatures, where reactions are sluggish, as consistent with the Ostwald step rule, and in direct contrast to equivalent reactions at high temperatures.


Water Resources Research | 2014

Precipitation isotopes link regional climate patterns to water supply in a tropical mountain forest, eastern Puerto Rico

Martha A. Scholl; Sheila F. Murphy

Like many mountainous areas in the tropics, watersheds in the Luquillo Mountains of eastern Puerto Rico have abundant rainfall and stream discharge and provide much of the water supply for the densely populated metropolitan areas nearby. Projected changes in regional temperature and atmospheric dynamics as a result of global warming suggest that water availability will be affected by changes in rainfall patterns. It is essential to understand the relative importance of different weather systems to water supply to determine how changes in rainfall patterns, interacting with geology and vegetation, will affect the water balance. To help determine the links between climate and water availability, stable isotope signatures of precipitation from different weather systems were established to identify those that are most important in maintaining streamflow and groundwater recharge. Precipitation stable isotope values in the Luquillo Mountains had a large range, from fog/cloud water with δ2H, δ18O values as high as +12 ‰, −0.73 ‰ to tropical storm rain with values as low as −127 ‰, −16.8 ‰. Temporal isotope values exhibit a reverse seasonality from those observed in higher latitude continental watersheds, with higher isotopic values in the winter and lower values in the summer. Despite the higher volume of convective and low-pressure system rainfall, stable isotope analyses indicated that under the current rainfall regime, frequent trade -wind orographic showers contribute much of the groundwater recharge and stream base flow. Analysis of rain events using 20 years of 15 -minute resolution data at a mountain station (643 m) showed an increasing trend in rainfall amount, in agreement with increased precipitable water in the atmosphere, but differing from climate model projections of drying in the region. The mean intensity of rain events also showed an increasing trend. The determination of recharge sources from stable isotope tracers indicates that water supply will be affected if regional atmospheric dynamics change trade- wind orographic rainfall patterns in the Caribbean.


Environmental Research Letters | 2015

The role of precipitation type, intensity, and spatial distribution in source water quality after wildfire

Sheila F. Murphy; Jeffrey H. Writer; R. Blaine McCleskey; Deborah A. Martin

Storms following wildfires are known to impair drinking water supplies in the southwestern United States, yet our understanding of the role of precipitation in post-wildfire water quality is far from complete. We quantitatively assessed water-quality impacts of different hydrologic events in the Colorado Front Range and found that for a three-year period, substantial hydrologic and geochemical responses downstream of a burned area were primarily driven by convective storms with a 30 min rainfall intensity >10 mm h?1. These storms, which typically occur several times each year in July?September, are often small in area, short-lived, and highly variable in intensity and geographic distribution. Thus, a rain gage network with high temporal resolution and spatial density, together with high-resolution stream sampling, are required to adequately characterize post-wildfire responses. We measured total suspended sediment, dissolved organic carbon (DOC), nitrate, and manganese concentrations that were 10?156 times higher downstream of a burned area compared to upstream during relatively common (50% annual exceedance probability) rainstorms, and water quality was sufficiently impaired to pose water-treatment concerns. Short-term water-quality impairment was driven primarily by increased surface runoff during higher intensity convective storms that caused erosion in the burned area and transport of sediment and chemical constituents to streams. Annual sediment yields downstream of the burned area were controlled by storm events and subsequent remobilization, whereas DOC yields were closely linked to annual runoff and thus were more dependent on interannual variation in spring runoff. Nitrate yields were highest in the third year post-wildfire. Results from this study quantitatively demonstrate that water quality can be altered for several years after wildfire. Because the southwestern US is prone to wildfires and high-intensity rain storms, the role of storms in post-wildfire water-quality impacts must be considered when assessing water-quality vulnerability.


PLOS ONE | 2017

Reassessing rainfall in the Luquillo Mountains, Puerto Rico: Local and global ecohydrological implications

Sheila F. Murphy; Robert F. Stallard; Martha A. Scholl; Grizelle González; Angel J. Torres-Sanchez

Mountains receive a greater proportion of precipitation than other environments, and thus make a disproportionate contribution to the world’s water supply. The Luquillo Mountains receive the highest rainfall on the island of Puerto Rico and serve as a critical source of water to surrounding communities. The area’s role as a long-term research site has generated numerous hydrological, ecological, and geological investigations that have been included in regional and global overviews that compare tropical forests to other ecosystems. Most of the forest- and watershed-wide estimates of precipitation (and evapotranspiration, as inferred by a water balance) have assumed that precipitation increases consistently with elevation. However, in this new analysis of all known current and historical rain gages in the region, we find that similar to other mountainous islands in the trade wind latitudes, leeward (western) watersheds in the Luquillo Mountains receive lower mean annual precipitation than windward (eastern) watersheds. Previous studies in the Luquillo Mountains have therefore overestimated precipitation in leeward watersheds by up to 40%. The Icacos watershed, however, despite being located at elevations 200–400 m below the tallest peaks and to the lee of the first major orographic barrier, receives some of the highest precipitation. Such lee-side enhancement has been observed in other island mountains of similar height and width, and may be caused by several mechanisms. Thus, the long-reported discrepancy of unrealistically low rates of evapotranspiration in the Icacos watershed is likely caused by previous underestimation of precipitation, perhaps by as much as 20%. Rainfall/runoff ratios in several previous studies suggested either runoff excess or runoff deficiency in Luquillo watersheds, but this analysis suggests that in fact they are similar to other tropical watersheds. Because the Luquillo Mountains often serve as a wet tropical archetype in global assessments of basic ecohydrological processes, these revised estimates are relevant to regional and global assessments of runoff efficiency, hydrologic effects of reforestation, geomorphic processes, and climate change.


Annals of the American Association of Geographers | 2018

Anthropocene landscape change and the legacy of nineteenth- and twentieth-century mining in the Fourmile Catchment, Colorado Front Range

David P. Dethier; William B. Ouimet; Sheila F. Murphy; Maneh Kotikian; Will Wicherski; Rachel M. Samuels

Human impacts on earth surface processes and materials are fundamental to understanding the proposed Anthropocene epoch. This study examines the magnitude, distribution, and long-term context of nineteenth- and twentieth-century mining in the Fourmile Creek catchment, Colorado, coupling airborne LiDAR topographic analysis with historical documents and field studies of river banks exposed by 2013 flooding. Mining impacts represent the dominant Anthropocene landscape change for this basin. Mining activity, particularly placer operations, controls floodplain stratigraphy and waste rock piles related to mining cover >5% of hillslopes in the catchment. Total rates of surface disturbance on slopes from mining activities (prospecting, mining, and road building) exceed pre-nineteenth-century rates by at least fifty times. Recent flooding and the overprint of human impacts obscure the record of Holocene floodplain evolution. Stratigraphic relations indicate that the Fourmile valley floor was as much as two meters higher in the past 2,000 years and that placer reworking, lateral erosion, or minor downcutting dominated from the late Holocene to present. Concentrations of As and Au in the fine fraction of hillslope soil, mining-related deposits, and fluvial deposits serve as a geochemical marker of mining activity in the catchment; reducing As and Au values in floodplain sediment will take hundreds of years to millennia. Overall, the Fourmile Creek catchment provides a valuable example of Anthropocene landscape change for mountainous regions of the Western United States, where hillslope and floodplain markers of human activity vary, high rates of geomorphic processes affect mixing and preservation of marker deposits, and long-term impact varies by landscape location.


Biogeochemistry | 2018

Before the storm: Antecedent conditions as regulators of hydrologic and biogeochemical response to extreme climate events

Sara K. McMillan; Henry F. Wilson; Christina L. Tague; Daniel M. Hanes; Shreeram Inamdar; Diana L. Karwan; Terry Loecke; Jonathan Morrison; Sheila F. Murphy; Philippe Vidon

While the influence of antecedent conditions on watershed function is widely recognized under typical hydrologic regimes, gaps remain in the context of extreme climate events (ECEs). ECEs are those events that far exceed seasonal norms of intensity, duration, or impact upon the physical environment or ecosystem. In this synthesis, we discuss the role of source availability and hydrologic connectivity on antecedent conditions and propose a conceptual framework to characterize system response to ECEs at the watershed scale. We present four case studies in detail that span a range of types of antecedent conditions and type of ECE to highlight important controls and feedbacks. Because ECEs have the potential to export large amounts of water and materials, their occurrence in sequence can disproportionately amplify the response. In fact, multiple events may not be considered extreme in isolation, but when they occur in close sequence they may lead to extreme responses in terms of both supply and transport capacity. Therefore, to advance our understanding of these complexities, we need continued development of a mechanistic understanding of how antecedent conditions set the stage for ECE response across multiple regions and climates, particularly since monitoring of these rare events is costly and difficult to obtain. Through focused monitoring of critical ecosystems during rare events we will also be able to extend and validate modeling studies. Cross-regional comparisons are also needed to define characteristics of resilient systems. These monitoring, modeling, and synthesis efforts are more critical than ever in light of changing climate regimes, intensification of human modifications of the landscape, and the disproportionate impact of ECEs in highly populated regions.


Aquatic Geochemistry | 2014

A Unified Assessment of Hydrologic and Biogeochemical Responses in Research Watersheds in Eastern Puerto Rico Using Runoff–Concentration Relations

Robert F. Stallard; Sheila F. Murphy


US Geological Survey Professional Paper | 2012

Water quality and landscape processes of four watersheds in eastern Puerto Rico

Sheila F. Murphy; Robert F. Stallard; Heather L. Buss; William A. Gould; Matthew C. Larsen; Zhigang Liu; Sebastián Martinuzzi; Isabel K. Parés-Ramos; Art F. White; Xiaoming Zou

Collaboration


Dive into the Sheila F. Murphy's collaboration.

Top Co-Authors

Avatar

Jeffrey H. Writer

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Robert F. Stallard

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

R. Blaine McCleskey

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Matthew C. Larsen

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Martha A. Scholl

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Art F. White

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David W. Clow

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Deborah A. Martin

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

James B. Shanley

United States Geological Survey

View shared research outputs
Researchain Logo
Decentralizing Knowledge