Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark R. Buckley is active.

Publication


Featured researches published by Mark R. Buckley.


Annual Review of Biomedical Engineering | 2012

Tendon healing: Repair and regeneration

Pramod B. Voleti; Mark R. Buckley; Louis J. Soslowsky

Injury and degeneration of tendon, the soft tissue that mechanically links muscle and bone, can cause substantial pain and loss of function. This review discusses the composition and function of healthy tendon and describes the structural, biological, and mechanical changes initiated during the process of tendon healing. Biochemical pathways activated during repair, experimental injury models, and parallels between tendon healing and tendon development are emphasized, and cutting-edge strategies for the enhancement of tendon healing are discussed.


Matrix Biology | 2013

Decorin expression is important for age-related changes in tendon structure and mechanical properties.

Andrew A. Dunkman; Mark R. Buckley; Michael J. Mienaltowski; Sheila M. Adams; Stephen J. Thomas; Lauren Satchell; Akash Kumar; Lydia Pathmanathan; David P. Beason; Renato V. Iozzo; David E. Birk; Louis J. Soslowsky

The aging population is at an increased risk of tendon injury and tendinopathy. Elucidating the molecular basis of tendon aging is crucial to understanding the age-related changes in structure and function in this vulnerable tissue. In this study, the structural and functional features of tendon aging are investigated. In addition, the roles of decorin and biglycan in the aging process were analyzed using transgenic mice at both mature and aged time points. Our hypothesis is that the increase in tendon injuries in the aging population is the result of altered structural properties that reduce the biomechanical function of the tendon and consequently increase susceptibility to injury. Decorin and biglycan are important regulators of tendon structure and therefore, we further hypothesized that decreased function in aged tendons is partly the result of altered decorin and biglycan expression. Biomechanical analyses of mature (day 150) and aged (day 570) patellar tendons revealed deteriorating viscoelastic properties with age. Histology and polarized light microscopy demonstrated decreased cellularity, alterations in tenocyte shape, and reduced collagen fiber alignment in the aged tendons. Ultrastructural analysis of fibril diameter distributions indicated an altered distribution in aged tendons with an increase of large diameter fibrils. Aged wild type tendons maintained expression of decorin which was associated with the structural and functional changes seen in aged tendons. Aged patellar tendons exhibited altered and generally inferior properties across multiple assays. However, decorin-null tendons exhibited significantly decreased effects of aging compared to the other genotypes. The amelioration of the functional deficits seen in the absence of decorin in aged tendons was associated with altered tendon fibril structure. Fibril diameter distributions in the decorin-null aged tendons were comparable to those observed in the mature wild type tendon with the absence of the subpopulation containing large diameter fibrils. Collectively, our findings provide evidence for age-dependent alterations in tendon architecture and functional activity, and further show that lack of stromal decorin attenuates these changes.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Implanted adipose progenitor cells as physicochemical regulators of breast cancer

Emily M. Chandler; Bo Ri Seo; Joseph P. Califano; Roberto C. Andresen Eguiluz; Jason S. Lee; Christine J. Yoon; David T. Tims; James X. Wang; Le Cheng; Sunish Mohanan; Mark R. Buckley; Itai Cohen; Alexander Yu. Nikitin; Rebecca M. E. Williams; Delphine Gourdon; Cynthia A. Reinhart-King; Claudia Fischbach

Multipotent adipose-derived stem cells (ASCs) are increasingly used for regenerative purposes such as soft tissue reconstruction following mastectomy; however, the ability of tumors to commandeer ASC functions to advance tumor progression is not well understood. Through the integration of physical sciences and oncology approaches we investigated the capability of tumor-derived chemical and mechanical cues to enhance ASC-mediated contributions to tumor stroma formation. Our results indicate that soluble factors from breast cancer cells inhibit adipogenic differentiation while increasing proliferation, proangiogenic factor secretion, and myofibroblastic differentiation of ASCs. This altered ASC phenotype led to varied extracellular matrix (ECM) deposition and contraction thereby enhancing tissue stiffness, a characteristic feature of breast tumors. Increased stiffness, in turn, facilitated changes in ASC behavior similar to those observed with tumor-derived chemical cues. Orthotopic mouse studies further confirmed the pathological relevance of ASCs in tumor progression and stiffness in vivo. In summary, altered ASC behavior can promote tumorigenesis and, thus, their implementation for regenerative therapy should be carefully considered in patients previously treated for cancer.


Journal of Biomechanics | 2009

Measurement of local strains in intervertebral disc anulus fibrosus tissue under dynamic shear: Contributions of matrix fiber orientation and elastin content

Arthur J. Michalek; Mark R. Buckley; Lawrence J. Bonassar; Itai Cohen; James C. Iatridis

Shear strain has been implicated as an initiator of intervertebral disc anulus failure, however a clear, multi-scale picture of how shear strain affects the tissue microstructure has been lacking. The purposes of this study were to measure microscale deformations in anulus tissue under dynamic shear in two orientations, and to determine the role of elastin in regulating these deformations. Bovine AF tissue was simultaneously shear loaded and imaged using confocal microscopy following either a buffer or elastase treatment. Digital image analysis was used to track through time local shear strains in specimens sheared transversely, and stretch and rotation of collagen fiber bundles in specimens sheared circumferentially. The results of this study suggest that sliding does not occur between AF plies under shear, and that interlamellar connections are governed by collagen and fibrilin rather than elastin. The transverse shear modulus was found to be approximately 1.6 times as high in plies the direction of the collagen fibers as in plies across them. Under physiological levels of in-plane shear, fiber bundles stretched and re-oriented linearly. Elastin was found to primarily stiffen plies transversely. We conclude that alterations in the elastic fiber network, as found with IVD herniation and degeneration, can therefore be expected to significantly influence the AF response to shear making it more susceptible to micro failure under bending or torsion loading.


Science | 2010

Direct Measurements of Island Growth and Step-Edge Barriers in Colloidal Epitaxy

Rajesh Ganapathy; Mark R. Buckley; Sharon J. Gerbode; Itai Cohen

Colloids as Models Colloids are often used as analogs for atoms in order to study crystallization kinetics or glassy dynamics using particles that are much easier to observe and that move on much slower time scales. Ganapathy et al. (p. 445; see the Perspective by Einstein and Stasevich) consider whether the analogous behavior extends to the growth of epitaxial films, a technique that is used in manufacturing. Controlling the rate of addition of the colloidal particles allowed the mapping of diffusional pathways during film nucleation and growth on a patterned substrate. The same relationships used to describe atomistic growth could be applied to the colloidal systems, but certain growth barriers such as those found at step edges and corners were controlled by diffusion rather than energetics. Multilayer film deposition and the templating of colloidal particles exhibit growth kinetics analogous to epitaxial growth. Epitaxial growth, a bottom-up self-assembly process for creating surface nano- and microstructures, has been extensively studied in the context of atoms. This process, however, is also a promising route to self-assembly of nanometer- and micrometer-scale particles into microstructures that have numerous technological applications. To determine whether atomic epitaxial growth laws are applicable to the epitaxy of larger particles with attractive interactions, we investigated the nucleation and growth dynamics of colloidal crystal films with single-particle resolution. We show quantitatively that colloidal epitaxy obeys the same two-dimensional island nucleation and growth laws that govern atomic epitaxy. However, we found that in colloidal epitaxy, step-edge and corner barriers that are responsible for film morphology have a diffusive origin. This diffusive mechanism suggests new routes toward controlling film morphology during epitaxy.


Journal of Biomechanics | 2010

HIGH-RESOLUTION SPATIAL MAPPING OF SHEAR PROPERTIES IN CARTILAGE

Mark R. Buckley; Attila Bergou; Jonathan Fouchard; Lawrence J. Bonassar; Itai Cohen

Structural properties of articular cartilage such as proteoglycan content, collagen content and collagen alignment are known to vary over length scales as small as a few microns (Bullough and Goodfellow, 1968; Bi et al., 2006). Characterizing the resulting variation in mechanical properties is critical for understanding how the inhomogeneous architecture of this tissue gives rise to its function. Previous studies have measured the depth-dependent shear modulus of articular cartilage using methods such as particle image velocimetry (PIV) that rely on cells and cell nuclei as fiducial markers to track tissue deformation (Buckley et al., 2008; Wong et al., 2008a). However, such techniques are limited by the density of trackable markers, which may be too low to take full advantage of optical microscopy. This limitation leads to noise in the acquired data, which is often exacerbated when the data is manipulated. In this study, we report on two techniques for increasing the accuracy of tissue deformation measurements. In the first technique, deformations were tracked in a grid that was photobleached on each tissue sample (Bruehlmann et al., 2004). In the second, a numerical technique was implemented that allowed for accurate differentiation of optical displacement measurements by minimizing the propagated experimental error while ensuring that truncation error associated with local averaging of the data remained small. To test their efficacy, we employed these techniques to compare the depth-dependent shear moduli of neonatal bovine and adult human articular cartilage. Using a photobleached grid and numerical optimization to gather and analyze data led to results consistent with those reported previously (Buckley et al., 2008; Wong et al., 2008a), but with increased spatial resolution and characteristic coefficients of variation that were reduced up to a factor of 3. This increased resolution allowed us to determine that the shear modulus of neonatal bovine and adult human tissue both exhibit a global minimum at a depth z of around 100 microm and plateau at large depths. The consistency of the depth dependence of |G*|(Z) for adult human and neonatal bovine tissue suggests a functional advantage resulting from this behavior.


The Spine Journal | 2010

The effects of needle puncture injury on microscale shear strain in the intervertebral disc annulus fibrosus.

Arthur J. Michalek; Mark R. Buckley; Lawrence J. Bonassar; Itai Cohen; James C. Iatridis

BACKGROUND CONTEXT Needle puncture of the intervertebral disc (IVD) is required for delivery of therapeutic agents to the nucleus pulposus and for some diagnostic procedures. Needle puncture has also been implicated as an initiator of disc degeneration. It is hypothesized that needle puncture may initiate IVD degeneration by altering microscale mechanical behavior in the annulus fibrosus (AF). PURPOSE Quantify the changes in AF microscale strain behavior resulting from puncture with a hypodermic needle. STUDY DESIGN Cadaveric IVD tissue explant study. METHODS Annulus fibrosus explants from bovine caudal IVDs that had been punctured radially with hypodermic needles were loaded in dynamic sinusoidal shear while being imaged with a confocal microscope. Digital image analysis was used to quantify local tissue strain and damage propagation with repeated shearing. RESULTS Needle puncture changed the distribution of microscale shear strains in the AF under load from homogenous (equal to far field) to a distinct pattern of high (4× far field) and low (0.25× far field) strain areas. Repeated loading did not cause further growth of the disruption beyond the second cycle. CONCLUSIONS Needle puncture results in a drastic alteration of microscale strain behavior in the AF under load. This alteration may directly initiate disc degeneration by being detrimental to tissue-cell mechanotransduction.


Matrix Biology | 2014

The Injury Response of Aged Tendons in the Absence of Biglycan and Decorin

Andrew A. Dunkman; Mark R. Buckley; Michael J. Mienaltowski; Sheila M. Adams; Stephen J. Thomas; Akash Kumar; David P. Beason; Renato V. Iozzo; David E. Birk; Louis J. Soslowsky

Recent studies have demonstrated that the small leucine-rich proteoglycans (SLRPs) biglycan and decorin impact tendon development, aging and healing in mature mice. However, despite the increased risk of tendon injury in the elderly, the role of SLRPs in tendon repair has not been investigated in aged animals. Therefore, our objective was to elucidate the influences of bigylcan and decorin on tendon healing in aged mice to relate our findings to previous work in mature mice. Since the processes of aging and healing are known to interact, our hypothesis was that aging mediates the role of biglycan and decorin on tendon healing. Patellar tendons from wild-type, biglycan-null and decorin-null mice were injured at 270 days using an established model. At 3 and 6 weeks post-surgery, structural, mechanical and biochemical analyses were performed and compared to uninjured controls. Early stage healing was inferior in biglycan-null and decorin-null mice as compared to wild type. However, tendons of all genotypes failed to exhibit improved mechanical properties between 3 and 6 weeks post-injury. In contrast, in a previous investigation of tendon healing in mature (i.e., 120 day-old) mice, only biglycan-null mice were deficient in early stage healing while decorin-null mice were deficient in late-stage healing. These results confirm that the impact of SLRPs on tendon healing is mediated by age and could inform future age-specific therapies for enhancing tendon healing.


Journal of Biomechanical Engineering-transactions of The Asme | 2013

Localization of Viscous Behavior and Shear Energy Dissipation in Articular Cartilage Under Dynamic Shear Loading

Mark R. Buckley; Lawrence J. Bonassar; Itai Cohen

Though remarkably robust, articular cartilage becomes susceptible to damage at high loading rates, particularly under shear. While several studies have measured the local static and steady-state shear properties of cartilage, it is the local viscoelastic properties that determine the tissues ability to withstand physiological loading regimens. However, measuring local viscoelastic properties requires overcoming technical challenges that include resolving strain fields in both space and time and accurately calculating their phase offsets. This study combined recently developed high-speed confocal imaging techniques with three approaches for analyzing time- and location-dependent mechanical data to measure the depth-dependent dynamic modulus and phase angles of articular cartilage. For sinusoidal shear at frequencies f = 0.01 to 1 Hz with no strain offset, the dynamic shear modulus |G*| and phase angle δ reached their minimum and maximum values (respectively) approximately 100 μm below the articular surface, resulting in a profound focusing of energy dissipation in this narrow band of tissue that increased with frequency. This region, known as the transitional zone, was previously thought to simply connect surface and deeper tissue regions. Within 250 μm of the articular surface, |G*| increased from 0.32 ± 0.08 to 0.42 ± 0.08 MPa across the five frequencies tested, while δ decreased from 12 deg ± 1 deg to 9.1 deg ± 0.5 deg. Deeper into the tissue, |G*| increased from 1.5 ± 0.4 MPa to 2.1 ± 0.6 MPa and δ decreased from 13 deg ± 1 deg to 5.5 deg ± 0.2 deg. Viscoelastic properties were also strain-dependent, with localized energy dissipation suppressed at higher shear strain offsets. These results suggest a critical role for the transitional zone in dissipating energy, representing a possible shift in our understanding of cartilage mechanical function. Further, they give insight into how focal degeneration and mechanical trauma could lead to sustained damage in this tissue.


Biomechanics and Modeling in Mechanobiology | 2012

Insights into interstitial flow, shear stress, and mass transport effects on ECM heterogeneity in bioreactor-cultivated engineered cartilage hydrogels

Tony Chen; Mark R. Buckley; Itai Cohen; Lawrence J. Bonassar; Hani A. Awad

Interstitial flow in articular cartilage is secondary to compressive and shear deformations during joint motion and has been linked with the well-characterized heterogeneity in structure and composition of its extracellular matrix. In this study, we investigated the effects of introducing gradients of interstitial flow on the evolution of compositional heterogeneity in engineered cartilage. Using a parallel-plate bioreactor, we observed that Poiseuille flow stimulation of chondrocyte-seeded agarose hydrogels led to an increase in glycosaminoglycan and type II collagen deposition in the surface region of the hydrogel exposed to flow. Experimental measurements of the interstitial flow fields based on the fluorescence recovery after photobleaching technique suggested that the observed heterogeneity in composition is associated with gradients in interstitial flow in a boundary layer at the hydrogel surface. Interestingly, the interstitial flow velocity profiles were nonlinearly influenced by flow rate, which upon closer examination led us to the original observation that the apparent hydrogel permeability decreased exponentially with increased interfacial shear stress. We also observed that interstitial flow enhances convective mass transport irrespective of molecular size within the boundary layer near the hydrogel surface and that the convective contribution to transport diminishes with depth in association with interstitial flow gradients. The implications of the nonlinearly inverse relationship between the interfacial shear stress and the interstitial flux and permeability and its consequences for convective transport are important for tissue engineering, since porous scaffolds comprise networks of Poiseuille channels (pores) through which interstitial flow must navigate under mechanical stimulation or direct perfusion.

Collaboration


Dive into the Mark R. Buckley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David E. Birk

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew A. Dunkman

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

David P. Beason

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

John Ketz

University of Rochester

View shared research outputs
Researchain Logo
Decentralizing Knowledge