Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sheila Prachand is active.

Publication


Featured researches published by Sheila Prachand.


Journal of Biological Chemistry | 2009

Blockade of the erbB2 receptor induces cardiomyocyte death through mitochondrial and reactive oxygen species-dependent pathways

Leo I. Gordon; Michael A. Burke; Amareshwar T.K. Singh; Sheila Prachand; Elliot D. Lieberman; Lin Sun; Tejaswitha J Naik; Sathyamangla V. Naga Prasad; Hossein Ardehali

Overexpression of the receptor tyrosine kinase erbB2 (Her2 in humans) is correlated with a poor prognosis in breast and ovarian cancers. Treatment with trastuzumab (a monoclonal antibody against erbB2) improves survival; however, it also causes cardiomyopathy. We hypothesized that blockade of the erbB2 receptor induces cardiomyocyte death through a mitochondrial pathway that is dependent on the production of reactive oxygen species (ROS). We first showed that levels of erbB2 receptor are significantly decreased in an animal model of ischemic heart disease and in human ischemic cardiomyopathy. We treated neonatal rat cardiomyocytes with an inhibitory erbB2 antibody to study the mechanism behind the deleterious effects of erbB2 blockade. These cells displayed a dose-dependent increase in ROS production and cell death compared with control IgG-treated cells; these processes were reversed by the antioxidant, N-acetylcysteine. The effects of erbB2 antibody on both cell death and ROS production were also reversed by cyclosporine A and diazoxide, chemicals that regulate the pro- and anti-apoptotic channels in the mitochondria, respectively. Furthermore, mouse embryonic fibroblasts lacking Bax and Bak (proteins that mediate cell death through a mitochondrial pathway) were resistant to the deleterious effects of erbB2 antibody. These effects of erbB2 blockade appear to occur through a pathway involving AKT and PKC-α. Our results suggest that erbB2 plays a role in cardiomyocyte survival, and that the deleterious effects of trastuzumab on the heart occur through a mitochondrial pathway and is mediated by ROS production. Manipulation of redox signaling may be beneficial in cancer patients receiving trastuzumab.


Clinical Cancer Research | 2009

PCI-24781 Induces Caspase and Reactive Oxygen Species–Dependent Apoptosis Through NF-κB Mechanisms and Is Synergistic with Bortezomib in Lymphoma Cells

Savita Bhalla; Sriram Balasubramanian; Kevin David; Mint Sirisawad; Joseph J. Buggy; Lauren Mauro; Sheila Prachand; Richard J. Miller; Leo I. Gordon; Andrew M. Evens

Purpose: We investigated the cytotoxicity and mechanisms of cell death of the broad-spectrum histone deacetylase (HDAC) inhibitor PCI-24781, alone and combined with bortezomib in Hodgkin lymphoma and non-Hodgkin lymphoma cell lines and primary lymphoproliferative (CLL/SLL) cells. Experimental Design: Apoptosis, mitochondrial membrane potential, cell cycle analysis, and reactive oxygen species (ROS) were measured by flow cytometry, whereas caspase activation was determined by Western blot. Nuclear factor κB (NF-κB)-related mRNAs were quantified by reverse transcription-PCR, NF-κB–related proteins by Western blotting, and NF-κB DNA-binding activity by electromobility shift assay. Finally, gene expression profiling was analyzed. Results: PCI-24781 induced concentration-dependent apoptosis that was associated with prominent G0/G1 arrest, decreased S-phase, increased p21 protein, and increased ROS in Hodgkin lymphoma and non-Hodgkin lymphoma cell lines. Dose-dependent apoptosis with PCI-24781 was also seen among primary CLL/SLL cells. PCI-24781–induced apoptosis was shown to be ROS- and caspase-dependent. Combined PCI-24781/bortezomib treatment resulted in strong synergistic apoptosis in all non-Hodgkin lymphoma lines (combination indices, 0.19-0.6) and was additive in Hodgkin lymphoma and primary CLL/SLL cells. Further, PCI-24781/bortezomib resulted in increased caspase cleavage, mitochondrial depolarization, and histone acetylation compared with either agent alone. Gene expression profiling showed that PCI-24781 alone significantly down-regulated several antioxidant genes, proteasome components, and NF-κB pathway genes, effects that were enhanced further with bortezomib. Reverse transcription-PCR confirmed down-regulation of NF-κB1 (p105), c-Myc, and IκB-kinase subunits, where NF-κB DNA binding activity was decreased. Conclusion: We show that PCI-24781 results in increased ROS and NF-κB inhibition, leading to caspase-dependent apoptosis. We also show that bortezomib is synergistic with PCI-24781. This combination or PCI-24781 alone has potential therapeutic value in lymphoma.


Clinical Cancer Research | 2010

Mitochondrial-mediated apoptosis in lymphoma cells by the diterpenoid lactone andrographolide, the active component of Andrographis paniculata.

Shuo Yang; Andrew M. Evens; Sheila Prachand; Amareshwar T.K. Singh; Savita Bhalla; Kevin David; Leo I. Gordon

Purpose: Andrographolide is a diterpenoid lactone isolated from Andrographis paniculata (King of Bitters), an herbal medicine used in Asia. It has been reported to have anti-inflammatory, antihypertensive, antiviral, and immune-stimulant properties. Furthermore, it has been shown to inhibit cancer cell proliferation and induce apoptosis in leukemia and solid tumor cell lines. Experimental Design: We studied the Burkitt p53-mutated Ramos cell line, the mantle cell lymphoma (MCL) line Granta, the follicular lymphoma (FL) cell line HF-1, and the diffuse large B-cell lymphoma (DLBCL) cell line SUDHL4, as well as primary cells from patients with FL, DLBCL, and MCL. Results: We found that andrographolide resulted in dose- and time-dependent cell death as measured by MTT. Andrographolide significantly increased reactive oxygen species (ROS) production in all cell lines. To determine mechanism of cell death, we measured apoptosis by Annexin V/propidium iodide in the presence and absence of the antioxidant N-acetyl-l-cysteine (NAC), the glutathione (GSH)–depleting agent buthionine sulfoxamine (BSO), or caspase inhibitors. We found that apoptosis was greatly enhanced by BSO, blocked by NAC, and accompanied by poly(ADP-ribose) polymerase cleavage and activation of caspase-3, caspase-8, and caspase-9. We measured BAX conformational change and mitochondrial membrane potential, and using mouse embryonic fibroblast (MEF) Bax/Bak double knockouts (MEFBax−/−/Bak−/−), we found that apoptosis was mediated through mitochondrial pathways, but dependent on caspases in both cell lines and patient samples. Conclusions: Andrographolide caused ROS-dependent apoptosis in lymphoma cell lines and in primary tumor samples, which was enhanced by depletion of GSH and inhibited by NAC or the pan-caspase inhibitor Z-VAD-FMK. Further studies of diterpenoid lactones in lymphoma are warranted. Clin Cancer Res; 16(19); 4755–68. ©2010 AACR.


Clinical Cancer Research | 2004

Imexon-Induced Apoptosis in Multiple Myeloma Tumor Cells is Caspase-8 Dependent

Andrew M. Evens; Sheila Prachand; Bo Shi; Mary Paniaqua; Leo I. Gordon; Ronald B. Gartenhaus

Purpose: Imexon is a 2-cyanoaziridine agent that has been shown to inhibit growth of chemotherapy-sensitive myeloma cells through apoptosis with decreased cellular stores of glutathione and increased reactive oxygen species (ROS). We examined the mechanism of imexon cytotoxicity in a diverse panel of dexamethasone and chemotherapy-sensitive and -resistant myeloma cell lines. Experimental Design: We examined cellular cytotoxicity, apoptosis, and changes in redox state in dexamethasone-sensitive (C2E3), dexamethasone-resistant (1-310 and 1-414), chemotherapy-sensitive (RPMI-8226), and chemotherapy-resistant (DOX-1V and DOX-10V) myeloma cell lines. Results: We found significant cytotoxicity after 48-h incubation with imexon (80–160 μm) in dexamethasone and chemotherapy-sensitive and -resistant myeloma cell lines in a time- and dose-dependent manner. The mechanism of imexon cytotoxicity in all cell lines was related to induction of apoptosis with the presence of cleaved caspase-3. Moreover, after imexon exposure in C2E3 and 1-414 cell lines, we demonstrated caspase-8-dependent apoptosis. Bcl-2:bax was proapoptotic with imexon in C2E3, whereas bcl-2:bax was independent of steroid resistance, chemotherapy sensitivity, and chemotherapy resistance. Depletion of intracellular glutathione was documented in RPMI-8226 at high imexon concentrations (≥225 μm) but not in other cell lines. Furthermore, ROS were found in C2E3, RPMI-8226, and 1-310 only at high imexon concentrations, whereas a sensitive marker of oxidative DNA damage, 8-hydroxydeoxyguanosine, was not increased in any cell line. Conclusions: Our results demonstrate that imexon has significant broad antimyeloma activity that is mediated through apoptotic mechanisms that is not dependent on production of ROS. Moreover, we have identified a mechanism of cytotoxicity in dexamethasone-sensitive and -resistant myeloma cells induced by imexon that is caspase-8 dependent.


Blood | 2011

The novel anti-MEK small molecule AZD6244 induces BIM-dependent and AKT-independent apoptosis in diffuse large B-cell lymphoma

Savita Bhalla; Andrew M. Evens; Bojie Dai; Sheila Prachand; Leo I. Gordon; Ronald B. Gartenhaus

The RAS/RAF/MEK/ERK signaling pathway has been largely unexplored as a potential therapeutic target in lymphoma. The novel 2nd generation anti-MEK small molecule, AZD6244, down-regulated its direct downstream target, phospho-ERK (pERK) in germinal center and nongerminal center diffuse large B-cell lymphoma (DLBCL) cell lines and primary cells. Similar decreased pERK levels were noted despite constitutive activation (CA) of MEK. Consequently, several lymphoma-related ERK substrates were down-regulated by AZD6244 including MCT-1, c-Myc, Bcl-2, Mcl-1, and CDK1/2. AZD6244 induced time- and dose-dependent antiproliferation and apoptosis in all DLBCL cell lines and fresh/primary cells (IC(50) 100nM-300nM). Furthermore, AZD6244 resulted in significantly less tumor compared with control in an in vivo DLBCL SCID xenograft model. Cell death was associated with cleaved PARP, caspases-8, -9, and -3, and apoptosis was caspase-dependent. In addition, there was stabilization of FoxO3a, activation of BIM and PUMA, and a significant decrease in c-Myc transcripts. Moreover, siRNA knockdown of BIM abrogated AZD6244-related apoptosis, while shRNA knockdown of ERK minimally sensitized cells. Finally, manipulation of AKT with transfection of OCI-LY3 cells with CA-AKT or through chemical inhibition (LY294002) had minimal effect on AZD6244-induced cell death. Altogether, these findings show that the novel anti-MEK agent, AZD6244, induced apoptosis in DLBCL and that cell death was BIM-dependent.


British Journal of Haematology | 2010

Glutathione depletion enhances arsenic trioxide-induced apoptosis in lymphoma cells through mitochondrial-independent mechanisms

Savita Bhalla; Leo I. Gordon; Kevin David; Sheila Prachand; Amareshwar T.K. Singh; Shuo Yang; Jane N. Winter; Dongsheng Guo; Thomas V. O'Halloran; Leonidas C. Platanias; Andrew M. Evens

Arsenic trioxide (ATO) is an effective therapeutic agent for acute promyelocytic leukemia (APL) (Evens et al, 2004). In APL, ATO induces differentiation at low concentrations, while inducing apoptosis at higher concentrations (Miller, et al 2002). In addition, ATO-induced apoptosis in APL is mediated through the mitochondrial apoptotic pathway, resulting in part from the production of reactive oxygen species (ROS) such as hydrogen peroxide (Dai, et al 1999, Yi, et al 2002). High intracellular levels of glutathione (GSH) confer resistance to ATO in part through the detoxification of ROS. Compounds that promote ROS and/or deplete protective metabolites such as GSH are able to sensitize tumor cells to oxidative cytolysis. Buthionine sulfoximine (BSO), a selective inhibitor of gamma glutamylcysteine synthetase, is known to effectively deplete cellular GSH (Davison, et al 2003, Gartenhaus, et al 2002). We evaluated herein the cytotoxic activity and cell death pathways induced by ATO alone and combined with BSO in non-Hodgkin’s lymphoma (NHL) cell lines and primary lymphoproliferative cells.


Free Radical Research | 1991

Scavenging of superoxide anion by phosphorylethanolamine: Studies in human neutrophils and in a cell free system

Leo I. Gordon; David Weiss; Sheila Prachand; Sigmund A. Weitzman

On the basis of previous observations, we attempted to characterize the effects of various products of phospholipid hydrolysis on neutrophil (PMN) respiratory burst activity. We studied the effects of phosphorylcholine (PC) and phosphorylethanoline (PE) on superoxide anion production in PMN and in cell free system. We found that PE but not PC inhibited measured superoxide anion, but that this was not due to inhibition of cellular superoxide generation but to scavenging of generated superoxide anion. Further, utilizing a system based upon the photo-oxidation of O-dianisidine sensitized by riboflavin, we were able to determine that the scavenging effect of PE was not superoxide dismutase (SOD)-like but rather a general scavenging or glutathione (GSH)-like effect. These data underscore the importance of identifying the mechanism of inhibition of superoxide generation by putative inhibitors as being due to a direct cellular effect or to a scavenging property.


PLOS ONE | 2013

Paradoxical regulation of hypoxia inducible factor-1α (HIF-1α) by histone deacetylase inhibitor in diffuse large B-cell lymphoma.

Savita Bhalla; Andrew M. Evens; Sheila Prachand; Paul T. Schumacker; Leo I. Gordon

Hypoxia inducible factor (HIF) is important in cancer, as it regulates various oncogenic genes as well as genes involved in cell survival, proliferation, and migration. Elevated HIF-1 protein promotes a more aggressive tumor phenotype, and greater HIF-1 expression has been demonstrated to correlate with poorer prognosis, increased risk of metastasis and increased mortality. Recent reports suggest that HIF-1 activates autophagy, a lysosomal degradation pathway which may promote tumor cell survival. We show here that HIF-1α expression is constitutively active in multiple diffuse large B cell lymphoma (DLBCL) cell lines under normoxia and it is regulated by the PI3K/AKT pathway. PCI-24781, a pan histone deacetylase inhibitor (HDACI), enhanced accumulation of HIF-1α and induced autophagy initially, while extended incubation with the drug resulted in inhibition of HIF-1α. We tested the hypothesis that PCI-24781- induced autophagy is mediated by HIF-1α and that inhibition of HIF-1α in these cells results in attenuation of autophagy and decreased survival. We also provide evidence that autophagy serves as a survival pathway in DLBCL cells treated with PCI-24781 which suggests that the use of autophagy inhibitors such as chloroquine or 3-methyl adenine in combination with PCI-24781 may enhance apoptosis in lymphoma cells.


Cellular Immunology | 1990

Inhibition of polymorphonuclear leukocyte oxidative metabolism by exogenous phospholipase C

Leo I. Gordon; Cynthia Schmeichel; Sheila Prachand; Sigmund A. Weitzman

We studied the effects of exogenous, purified phospholipase C (PLC) on neutrophil oxidative metabolism, lysosomal enzyme release and aggregation. We found that PLC inhibited O2- and H2O2 generation and oxygen consumption, but did not alter glucose oxidation via the hexose monophosphate shunt. In contrast, we found a striking stimulation of aggregation and release of the lysosomal enzymes lysozyme and beta-glucuronidase. In experiments designed to further characterize the mechanism of the PLC effect on membrane activation we studied the effect of PLC on intracellular calcium concentration [Ca2+]i and found that PLC did not interfere with the fMLP-mediated rise in [Ca2+]i, suggesting that its inhibitory effect on the respiratory burst does not involve inhibition of early signal transduction events. In addition, we found that PLC alone results in mobilization of intracellular Ca2+ stores, consistent with its stimulatory effect on aggregation and lysosomal enzyme release.


Molecular Cancer Therapeutics | 2013

Abstract B201: Targeting HIF-1α in diffuse large B cell lymphoma: Role for HDAC inhibitors.

Savita Bhalla; Andrew M. Evens; Sheila Prachand; Paul T. Schumacker; Leo I. Gordon

Hypoxia inducible factor (HIF) is important in cancer, as it regulates various oncogenic genes as well as genes involved in cell survival, proliferation, and migration. Elevated HIF-1 protein promotes a more aggressive tumor phenotype, and greater HIF-1 expression has been demonstrated to correlate with poorer prognosis, increased risk of metastasis and increased mortality. Recent reports suggest that HIF-1 activates autophagy, a lysosomal degradation pathway which may promote tumor cell survival. We show here that HIF-1α is constitutively active in multiple diffuse large B cell lymphoma (DLBCL) cell lines under normoxia and it is regulated by the PI3K/AKT pathway. PCI-24781, a pan histone deacetylase inhibitor (HDACI), enhanced accumulation of HIF-1α and induced autophagy initially, while extended incubation with the drug resulted in inhibition of HIF-1α. We tested the hypothesis that PCI-24781- induced autophagy is mediated by HIF-1α and that inhibition of HIF-1α in these cells results in attenuation of autophagy and decreased survival. We also provide evidence that autophagy serves as a survival pathway in DLBCL cells treated with PCI-24781 which suggest that the use of autophagy inhibitors such as chloroquine or 3-methyl adenine in combination with PCI-24781 may enhance apoptosis in lymphoma cells. Citation Information: Mol Cancer Ther 2013;12(11 Suppl):B201. Citation Format: Savita Bhalla, Andrew M. Evens, Sheila Prachand, Paul T. Schumacker, Leo I. Gordon. Targeting HIF-1α in diffuse large B cell lymphoma: Role for HDAC inhibitors. [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2013 Oct 19-23; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2013;12(11 Suppl):Abstract nr B201.

Collaboration


Dive into the Sheila Prachand's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shuo Yang

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Kevin David

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge