Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shelby Bidwell is active.

Publication


Featured researches published by Shelby Bidwell.


Science | 2007

Genome sequence of Aedes aegypti, a major arbovirus vector

Vishvanath Nene; Jennifer R. Wortman; Daniel John Lawson; Brian J. Haas; Chinnappa D. Kodira; Zhijian Jake Tu; Brendan J. Loftus; Zhiyong Xi; Karyn Megy; Manfred Grabherr; Quinghu Ren; Evgeny M. Zdobnov; Neil F. Lobo; Kathryn S. Campbell; Susan E. Brown; Maria F. Bonaldo; Jingsong Zhu; Steven P. Sinkins; David G. Hogenkamp; Paolo Amedeo; Peter Arensburger; Peter W. Atkinson; Shelby Bidwell; Jim Biedler; Ewan Birney; Robert V. Bruggner; Javier Costas; Monique R. Coy; Jonathan Crabtree; Matt Crawford

We present a draft sequence of the genome of Aedes aegypti, the primary vector for yellow fever and dengue fever, which at ∼1376 million base pairs is about 5 times the size of the genome of the malaria vector Anopheles gambiae. Nearly 50% of the Ae. aegypti genome consists of transposable elements. These contribute to a factor of ∼4 to 6 increase in average gene length and in sizes of intergenic regions relative to An. gambiae and Drosophila melanogaster. Nonetheless, chromosomal synteny is generally maintained among all three insects, although conservation of orthologous gene order is higher (by a factor of ∼2) between the mosquito species than between either of them and the fruit fly. An increase in genes encoding odorant binding, cytochrome P450, and cuticle domains relative to An. gambiae suggests that members of these protein families underpin some of the biological differences between the two mosquito species.


Nature | 2002

Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii

Jane M. Carlton; Samuel V. Angiuoli; Bernard B. Suh; Taco W. A. Kooij; Mihaela Pertea; Joana C. Silva; Maria D. Ermolaeva; Jonathan E. Allen; Jeremy D. Selengut; Hean L. Koo; Jeremy Peterson; Mihai Pop; Daniel S. Kosack; Martin Shumway; Shelby Bidwell; Shamira Shallom; Susan Van Aken; Steven Riedmuller; Tamara Feldblyum; Jennifer Cho; John Quackenbush; Martha Sedegah; Azadeh Shoaibi; Leda M. Cummings; Laurence Florens; John R. Yates; J. Dale Raine; Robert E. Sinden; Michael Harris; Deirdre Cunningham

Species of malaria parasite that infect rodents have long been used as models for malaria disease research. Here we report the whole-genome shotgun sequence of one species, Plasmodium yoelii yoelii, and comparative studies with the genome of the human malaria parasite Plasmodium falciparum clone 3D7. A synteny map of 2,212 P. y. yoelii contiguous DNA sequences (contigs) aligned to 14 P. falciparum chromosomes reveals marked conservation of gene synteny within the body of each chromosome. Of about 5,300 P. falciparum genes, more than 3,300 P. y. yoelii orthologues of predominantly metabolic function were identified. Over 800 copies of a variant antigen gene located in subtelomeric regions were found. This is the first genome sequence of a model eukaryotic parasite, and it provides insight into the use of such systems in the modelling of Plasmodium biology and disease.


Nature | 2008

Comparative genomics of the neglected human malaria parasite Plasmodium vivax.

Jane M. Carlton; John H. Adams; Joana C. Silva; Shelby Bidwell; Hernan Lorenzi; Elisabet Caler; Jonathan Crabtree; Samuel V. Angiuoli; Emilio F. Merino; Paolo Amedeo; Qin Cheng; Richard M. R. Coulson; Brendan S. Crabb; Hernando A. del Portillo; Kobby Essien; Tamara V. Feldblyum; Carmen Fernandez-Becerra; Paul R. Gilson; Amy H. Gueye; Xiang Guo; Simon Kang’a; Taco W. A. Kooij; Michael L. J. Korsinczky; Esmeralda V. S. Meyer; Vish Nene; Ian T. Paulsen; Owen White; Stuart A. Ralph; Qinghu Ren; Tobias Sargeant

The human malaria parasite Plasmodium vivax is responsible for 25–40% of the ∼515 million annual cases of malaria worldwide. Although seldom fatal, the parasite elicits severe and incapacitating clinical symptoms and often causes relapses months after a primary infection has cleared. Despite its importance as a major human pathogen, P. vivax is little studied because it cannot be propagated continuously in the laboratory except in non-human primates. We sequenced the genome of P. vivax to shed light on its distinctive biological features, and as a means to drive development of new drugs and vaccines. Here we describe the synteny and isochore structure of P. vivax chromosomes, and show that the parasite resembles other malaria parasites in gene content and metabolic potential, but possesses novel gene families and potential alternative invasion pathways not recognized previously. Completion of the P. vivax genome provides the scientific community with a valuable resource that can be used to advance investigation into this neglected species.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle

Ewen F. Kirkness; Brian J. Haas; Weilin Sun; Henk R. Braig; M. Alejandra Perotti; John M. Clark; Si Hyeock Lee; Hugh M. Robertson; Ryan C. Kennedy; Eran Elhaik; Daniel Gerlach; Evgenia V. Kriventseva; Christine G. Elsik; Dan Graur; Catherine A. Hill; Jan A. Veenstra; Brian Walenz; Jose M. C. Tubio; José M. C. Ribeiro; Julio Rozas; J. Spencer Johnston; Justin T. Reese; Aleksandar Popadić; Marta Tojo; Didier Raoult; David L. Reed; Yoshinori Tomoyasu; Emily Kraus; Omprakash Mittapalli; Venu M. Margam

As an obligatory parasite of humans, the body louse (Pediculus humanus humanus) is an important vector for human diseases, including epidemic typhus, relapsing fever, and trench fever. Here, we present genome sequences of the body louse and its primary bacterial endosymbiont Candidatus Riesia pediculicola. The body louse has the smallest known insect genome, spanning 108 Mb. Despite its status as an obligate parasite, it retains a remarkably complete basal insect repertoire of 10,773 protein-coding genes and 57 microRNAs. Representing hemimetabolous insects, the genome of the body louse thus provides a reference for studies of holometabolous insects. Compared with other insect genomes, the body louse genome contains significantly fewer genes associated with environmental sensing and response, including odorant and gustatory receptors and detoxifying enzymes. The unique architecture of the 18 minicircular mitochondrial chromosomes of the body louse may be linked to the loss of the gene encoding the mitochondrial single-stranded DNA binding protein. The genome of the obligatory louse endosymbiont Candidatus Riesia pediculicola encodes less than 600 genes on a short, linear chromosome and a circular plasmid. The plasmid harbors a unique arrangement of genes required for the synthesis of pantothenate, an essential vitamin deficient in the louse diet. The human body louse, its primary endosymbiont, and the bacterial pathogens that it vectors all possess genomes reduced in size compared with their free-living close relatives. Thus, the body louse genome project offers unique information and tools to use in advancing understanding of coevolution among vectors, symbionts, and pathogens.


Science | 2010

Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics.

Peter Arensburger; Karine Megy; Robert M. Waterhouse; Jenica Abrudan; Paolo Amedeo; Beatriz García Antelo; Lyric C. Bartholomay; Shelby Bidwell; Elisabet Caler; Francisco Camara; Corey L. Campbell; Kathryn S. Campbell; Claudio Casola; Marta T. Castro; Ishwar Chandramouliswaran; Sinéad B. Chapman; Scott Christley; Javier Costas; Eric Eisenstadt; Cédric Feschotte; Claire M. Fraser-Liggett; Roderic Guigó; Brian J. Haas; Martin Hammond; Bill S. Hansson; Janet Hemingway; Sharon R. Hill; Clint Howarth; Rickard Ignell; Ryan C. Kennedy

Closing the Vector Circle The genome sequence of Culex quinquefasciatus offers a representative of the third major genus of mosquito disease vectors for comparative analysis. In a major international effort, Arensburger et al. (p. 86) uncovered divergences in the C. quinquefasciatus genome compared with the representatives of the other two genera Aedes aegypti and Anopheles gambiae. The main difference noted is the expansion of numbers of genes, particularly for immunity, oxidoreductive functions, and digestive enzymes, which may reflect specific aspects of the Culex life cycle. Bartholomay et al. (p. 88) explored infection-response genes in Culex in more depth and uncovered 500 immune response-related genes, similar to the numbers seen in Aedes, but fewer than seen in Anopheles or the fruit fly Drosophila melanogaster. The higher numbers of genes were attributed partly to expansions in those encoding serpins, C-type lectins, and fibrinogen-related proteins, consistent with greater immune surveillance and associated signaling needed to monitor the dangers of breeding in polluted, urbanized environments. Transcriptome analysis confirmed that inoculation with unfamiliar bacteria prompted strong immune responses in Culex. The worm and virus pathogens that the mosquitoes transmit naturally provoked little immune activation, however, suggesting that tolerance has evolved to any damage caused by replication of the pathogens in the insects. The genome of a third mosquito species reveals distinctions related to vector capacities and habitat preferences. Culex quinquefasciatus (the southern house mosquito) is an important mosquito vector of viruses such as West Nile virus and St. Louis encephalitis virus, as well as of nematodes that cause lymphatic filariasis. C. quinquefasciatus is one species within the Culex pipiens species complex and can be found throughout tropical and temperate climates of the world. The ability of C. quinquefasciatus to take blood meals from birds, livestock, and humans contributes to its ability to vector pathogens between species. Here, we describe the genomic sequence of C. quinquefasciatus: Its repertoire of 18,883 protein-coding genes is 22% larger than that of Aedes aegypti and 52% larger than that of Anopheles gambiae with multiple gene-family expansions, including olfactory and gustatory receptors, salivary gland genes, and genes associated with xenobiotic detoxification.


PLOS Pathogens | 2007

Genome Sequence of Babesia bovis and Comparative Analysis of Apicomplexan Hemoprotozoa

Kelly A. Brayton; Audrey O.T. Lau; David R. Herndon; Linda I. Hannick; Lowell S. Kappmeyer; Shawn J. Berens; Shelby Bidwell; Wendy C. Brown; Jonathan Crabtree; Doug Fadrosh; Tamara Feldblum; Heather A. Forberger; Brian J. Haas; Jeanne M. Howell; Hoda Khouri; Hean Koo; David J. Mann; Junzo Norimine; Ian T. Paulsen; Diana Radune; Qinghu Ren; R. K. W. Smith; Carlos E. Suarez; Owen White; Jennifer R. Wortman; Donald P. Knowles; Terry F. McElwain; Vishvanath Nene

Babesia bovis is an apicomplexan tick-transmitted pathogen of cattle imposing a global risk and severe constraints to livestock health and economic development. The complete genome sequence was undertaken to facilitate vaccine antigen discovery, and to allow for comparative analysis with the related apicomplexan hemoprotozoa Theileria parva and Plasmodium falciparum. At 8.2 Mbp, the B. bovis genome is similar in size to that of Theileria spp. Structural features of the B. bovis and T. parva genomes are remarkably similar, and extensive synteny is present despite several chromosomal rearrangements. In contrast, B. bovis and P. falciparum, which have similar clinical and pathological features, have major differences in genome size, chromosome number, and gene complement. Chromosomal synteny with P. falciparum is limited to microregions. The B. bovis genome sequence has allowed wide scale analyses of the polymorphic variant erythrocyte surface antigen protein (ves1 gene) family that, similar to the P. falciparum var genes, is postulated to play a role in cytoadhesion, sequestration, and immune evasion. The ∼150 ves1 genes are found in clusters that are distributed throughout each chromosome, with an increased concentration adjacent to a physical gap on chromosome 1 that contains multiple ves1-like sequences. ves1 clusters are frequently linked to a novel family of variant genes termed smorfs that may themselves contribute to immune evasion, may play a role in variant erythrocyte surface antigen protein biology, or both. Initial expression analysis of ves1 and smorf genes indicates coincident transcription of multiple variants. B. bovis displays a limited metabolic potential, with numerous missing pathways, including two pathways previously described for the P. falciparum apicoplast. This reduced metabolic potential is reflected in the B. bovis apicoplast, which appears to have fewer nuclear genes targeted to it than other apicoplast containing organisms. Finally, comparative analyses have identified several novel vaccine candidates including a positional homolog of p67 and SPAG-1, Theileria sporozoite antigens targeted for vaccine development. The genome sequence provides a greater understanding of B. bovis metabolism and potential avenues for drug therapies and vaccine development.


Nature Methods | 2012

Protein interaction data curation: the International Molecular Exchange (IMEx) consortium

Sandra Orchard; Samuel Kerrien; Sara Abbani; Bruno Aranda; Jignesh Bhate; Shelby Bidwell; Alan Bridge; Leonardo Briganti; Fiona S. L. Brinkman; Gianni Cesareni; Andrew Chatr-aryamontri; Emilie Chautard; Carol Chen; Marine Dumousseau; Johannes Goll; Robert E. W. Hancock; Linda I. Hannick; Igor Jurisica; Jyoti Khadake; David J. Lynn; Usha Mahadevan; Livia Perfetto; Arathi Raghunath; Sylvie Ricard-Blum; Bernd Roechert; Lukasz Salwinski; Volker Stümpflen; Mike Tyers; Peter Uetz; Ioannis Xenarios

The International Molecular Exchange (IMEx) consortium is an international collaboration between major public interaction data providers to share literature-curation efforts and make a nonredundant set of protein interactions available in a single search interface on a common website (http://www.imexconsortium.org/). Common curation rules have been developed, and a central registry is used to manage the selection of articles to enter into the dataset. We discuss the advantages of such a service to the user, our quality-control measures and our data-distribution practices.


Genome Biology | 2014

Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea

Isobel A. P. Parkin; Chushin Koh; Haibao Tang; Stephen J. Robinson; Sateesh Kagale; Wayne E. Clarke; Christopher D. Town; John Nixon; Vivek Krishnakumar; Shelby Bidwell; Harry Belcram; Matthew G. Links; Jérémy Just; Carling Clarke; Tricia Bender; Terry Huebert; Annaliese S. Mason; J. Chris Pires; Guy C. Barker; Jonathan D. Moore; Peter Glen Walley; Sahana Manoli; Jacqueline Batley; David Edwards; Matthew N. Nelson; Xiyin Wang; Andrew H. Paterson; Graham J. King; Ian Bancroft; Boulos Chalhoub

BackgroundBrassica oleracea is a valuable vegetable species that has contributed to human health and nutrition for hundreds of years and comprises multiple distinct cultivar groups with diverse morphological and phytochemical attributes. In addition to this phenotypic wealth, B. oleracea offers unique insights into polyploid evolution, as it results from multiple ancestral polyploidy events and a final Brassiceae-specific triplication event. Further, B. oleracea represents one of the diploid genomes that formed the economically important allopolyploid oilseed, Brassica napus. A deeper understanding of B. oleracea genome architecture provides a foundation for crop improvement strategies throughout the Brassica genus.ResultsWe generate an assembly representing 75% of the predicted B. oleracea genome using a hybrid Illumina/Roche 454 approach. Two dense genetic maps are generated to anchor almost 92% of the assembled scaffolds to nine pseudo-chromosomes. Over 50,000 genes are annotated and 40% of the genome predicted to be repetitive, thus contributing to the increased genome size of B. oleracea compared to its close relative B. rapa. A snapshot of both the leaf transcriptome and methylome allows comparisons to be made across the triplicated sub-genomes, which resulted from the most recent Brassiceae-specific polyploidy event.ConclusionsDifferential expression of the triplicated syntelogs and cytosine methylation levels across the sub-genomes suggest residual marks of the genome dominance that led to the current genome architecture. Although cytosine methylation does not correlate with individual gene dominance, the independent methylation patterns of triplicated copies suggest epigenetic mechanisms play a role in the functional diversification of duplicate genes.


PLOS Pathogens | 2005

A Plasmodium Whole-Genome Synteny Map: Indels and Synteny Breakpoints as Foci for Species-Specific Genes

Taco W. A. Kooij; Jane M. Carlton; Shelby Bidwell; Neil Hall; Jai Ramesar; Chris J. Janse; Andrew P. Waters

Whole-genome comparisons are highly informative regarding genome evolution and can reveal the conservation of genome organization and gene content, gene regulatory elements, and presence of species-specific genes. Initial comparative genome analyses of the human malaria parasite Plasmodium falciparum and rodent malaria parasites (RMPs) revealed a core set of 4,500 Plasmodium orthologs located in the highly syntenic central regions of the chromosomes that sharply defined the boundaries of the variable subtelomeric regions. We used composite RMP contigs, based on partial DNA sequences of three RMPs, to generate a whole-genome synteny map of P. falciparum and the RMPs. The core regions of the 14 chromosomes of P. falciparum and the RMPs are organized in 36 synteny blocks, representing groups of genes that have been stably inherited since these malaria species diverged, but whose relative organization has altered as a result of a predicted minimum of 15 recombination events. P. falciparum-specific genes and gene families are found in the variable subtelomeric regions (575 genes), at synteny breakpoints (42 genes), and as intrasyntenic indels (126 genes). Of the 168 non-subtelomeric P. falciparum genes, including two newly discovered gene families, 68% are predicted to be exported to the surface of the blood stage parasite or infected erythrocyte. Chromosomal rearrangements are implicated in the generation and dispersal of P. falciparum-specific gene families, including one encoding receptor-associated protein kinases. The data show that both synteny breakpoints and intrasyntenic indels can be foci for species-specific genes with a predicted role in host-parasite interactions and suggest that, besides rearrangements in the subtelomeric regions, chromosomal rearrangements may also be involved in the generation of species-specific gene families. A majority of these genes are expressed in blood stages, suggesting that the vertebrate host exerts a greater selective pressure than the mosquito vector, resulting in the acquisition of diversity.


European Journal of Immunology | 2005

Immune responses to Plasmodium vivax pre-erythrocytic stage antigens in naturally exposed Duffy-negative humans: a potential model for identification of liver-stage antigens.

Ruobing Wang; Myriam Arévalo-Herrera; Malcolm J. Gardner; Anilza Bonelo; Jane M. Carlton; Andrés Gómez; Omaira Vera; Liliana Soto; Juana Vergara; Shelby Bidwell; Alexander Domingo; Claire M. Fraser; Sócrates Herrera

Duffy antigen is the receptor used by Plasmodium vivax to invade erythrocytes. Consequently, individuals lacking Duffy antigen [Fy(–)] do not develop blood‐stage infections. We hypothesized that naturally exposed Fy(–) humans may develop immune responses mainly to pre‐erythrocytic stages and could be used to study acquired immunity to P. vivax and to identify liver‐stage antigens. We report here that antibody and IFN‐γ responses to known sporozoite antigens were significantly induced by natural exposure in Fy(–) humans, whereas responses to blood‐stage antigens were significantly induced in Fy(+) humans. IFN‐γ responses to sporozoite antigens were lower in Fy(+) than in Fy(–) humans, indicating that in Fy(+) humans blood‐stage infections may have suppressed T cell responses to pre‐erythrocytic stages. We evaluated the immune responses to 18 novel P. vivax homologs of P. falciparum sporozoite proteins identified from the P. vivax genome sequence. Eight proteins recalled IFN‐γ responses in P. vivax‐exposed but not in unexposed individuals. Of these, 3 antigens elicited IFN‐γ responses in Fy(–) but not in Fy(+) individuals. These results suggest that differential immune responses observed in naturally exposed Fy(–) and Fy(+) individuals can be exploited to identify P. vivax stage‐specific antigens.

Collaboration


Dive into the Shelby Bidwell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elisabet Caler

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haibao Tang

Fujian Agriculture and Forestry University

View shared research outputs
Researchain Logo
Decentralizing Knowledge