Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shelby L. O’Connor is active.

Publication


Featured researches published by Shelby L. O’Connor.


Nature Communications | 2016

A rhesus macaque model of Asian-lineage Zika virus infection

Dawn M. Dudley; Matthew T. Aliota; Emma L. Mohr; Andrea M. Weiler; Gabrielle Lehrer-Brey; Kim L. Weisgrau; Mariel S. Mohns; Meghan E. Breitbach; Mustafa N. Rasheed; Christina M. Newman; Dane D. Gellerup; Louise H. Moncla; Jennifer Post; Nancy Schultz-Darken; Michele L. Schotzko; Jennifer M. Hayes; Josh Eudailey; M. Anthony Moody; Sallie R. Permar; Shelby L. O’Connor; Eva G. Rakasz; Heather A. Simmons; Saverio Capuano; Thaddeus G. Golos; Jorge E. Osorio; Thomas C. Friedrich; David H. O’Connor

Infection with Asian-lineage Zika virus (ZIKV) has been associated with Guillain–Barré syndrome and fetal abnormalities, but the underlying mechanisms remain poorly understood. Animal models of infection are thus urgently needed. Here we show that rhesus macaques are susceptible to infection by an Asian-lineage ZIKV closely related to strains currently circulating in the Americas. Following subcutaneous inoculation, ZIKV RNA is detected in plasma 1 day post infection (d.p.i.) in all animals (N=8, including 2 pregnant animals), and is also present in saliva, urine and cerebrospinal fluid. Non-pregnant and pregnant animals remain viremic for 21 days and for up to at least 57 days, respectively. Neutralizing antibodies are detected by 21 d.p.i. Rechallenge 10 weeks after the initial challenge results in no detectable virus replication, indicating protective immunity against homologous strains. Therefore, Asian-lineage ZIKV infection of rhesus macaques provides a relevant animal model for studying pathogenesis and evaluating potential interventions against human infection, including during pregnancy.


Immunogenetics | 2007

Comprehensive characterization of MHC class II haplotypes in Mauritian cynomolgus macaques

Shelby L. O’Connor; Alex J. Blasky; Chad J. Pendley; Ericka A. Becker; Roger W. Wiseman; Julie A. Karl; Austin L. Hughes; David H. O’Connor

There are currently no nonhuman primate models with fully defined major histocompatibility complex (MHC) class II genetics. We recently showed that six common MHC haplotypes account for essentially all MHC diversity in cynomolgus macaques (Macaca fascicularis) from the island of Mauritius. In this study, we employ complementary DNA cloning and sequencing to comprehensively characterize full length MHC class II alleles expressed at the Mafa-DPA, -DPB, -DQA, -DQB, -DRA, and -DRB loci on the six common haplotypes. We describe 34 full-length MHC class II alleles, 12 of which are completely novel. Polymorphism was evident at all six loci including DPA, a locus thought to be monomorphic in rhesus macaques. Similar to other Old World monkeys, Mauritian cynomolgus macaques (MCM) share MHC class II allelic lineages with humans at the DQ and DR loci, but not at the DP loci. Additionally, we identified extensive sharing of MHC class II alleles between MCM and other nonhuman primates. The characterization of these full-length-expressed MHC class II alleles will enable researchers to generate MHC class II transferent cell lines, tetramers, and other molecular reagents that can be used to explore CD4+ T lymphocyte responses in MCM.


PLOS Pathogens | 2017

Highly efficient maternal-fetal Zika virus transmission in pregnant rhesus macaques

Sydney Nguyen; Kathleen M. Antony; Dawn M. Dudley; Sarah Kohn; Heather A. Simmons; Bryce Wolfe; M. Shahriar Salamat; Leandro B. C. Teixeira; Gregory J. Wiepz; Troy H. Thoong; Matthew T. Aliota; Andrea M. Weiler; Gabrielle L. Barry; Kim L. Weisgrau; Logan J. Vosler; Mariel S. Mohns; Meghan E. Breitbach; Laurel M. Stewart; Mustafa N. Rasheed; Christina M. Newman; Michael E. Graham; Oliver Wieben; Patrick A. Turski; Kevin M. Johnson; Jennifer Post; Jennifer M. Hayes; Nancy Schultz-Darken; Michele L. Schotzko; Josh Eudailey; Sallie R. Permar

Infection with Zika virus (ZIKV) is associated with human congenital fetal anomalies. To model fetal outcomes in nonhuman primates, we administered Asian-lineage ZIKV subcutaneously to four pregnant rhesus macaques. While non-pregnant animals in a previous study contemporary with the current report clear viremia within 10–12 days, maternal viremia was prolonged in 3 of 4 pregnancies. Fetal head growth velocity in the last month of gestation determined by ultrasound assessment of head circumference was decreased in comparison with biparietal diameter and femur length within each fetus, both within normal range. ZIKV RNA was detected in tissues from all four fetuses at term cesarean section. In all pregnancies, neutrophilic infiltration was present at the maternal-fetal interface (decidua, placenta, fetal membranes), in various fetal tissues, and in fetal retina, choroid, and optic nerve (first trimester infection only). Consistent vertical transmission in this primate model may provide a platform to assess risk factors and test therapeutic interventions for interruption of fetal infection. The results may also suggest that maternal-fetal ZIKV transmission in human pregnancy may be more frequent than currently appreciated.


PLOS Neglected Tropical Diseases | 2016

Heterologous Protection against Asian Zika Virus Challenge in Rhesus Macaques

Matthew T. Aliota; Dawn M. Dudley; Christina M. Newman; Emma L. Mohr; Dane D. Gellerup; Meghan E. Breitbach; Connor R. Buechler; Mustafa N. Rasheed; Mariel S. Mohns; Andrea M. Weiler; Gabrielle L. Barry; Kim L. Weisgrau; Josh Eudailey; Eva G. Rakasz; Logan J. Vosler; Jennifer Post; Saverio Capuano; Thaddeus G. Golos; Sallie R. Permar; Jorge E. Osorio; Thomas C. Friedrich; Shelby L. O’Connor; David H. O’Connor

Background Zika virus (ZIKV; Flaviviridae, Flavivirus) was declared a public health emergency of international concern by the World Health Organization (WHO) in February 2016, because of the evidence linking infection with ZIKV to neurological complications, such as Guillain-Barre Syndrome in adults and congenital birth defects including microcephaly in the developing fetus. Because development of a ZIKV vaccine is a top research priority and because the genetic and antigenic variability of many RNA viruses limits the effectiveness of vaccines, assessing whether immunity elicited against one ZIKV strain is sufficient to confer broad protection against all ZIKV strains is critical. Recently, in vitro studies demonstrated that ZIKV likely circulates as a single serotype. Here, we demonstrate that immunity elicited by African lineage ZIKV protects rhesus macaques against subsequent infection with Asian lineage ZIKV. Methodology/Principal Findings Using our recently developed rhesus macaque model of ZIKV infection, we report that the prototypical ZIKV strain MR766 productively infects macaques, and that immunity elicited by MR766 protects macaques against heterologous Asian ZIKV. Furthermore, using next generation deep sequencing, we found in vivo restoration of a putative N-linked glycosylation site upon replication in macaques that is absent in numerous MR766 strains that are widely being used by the research community. This reversion highlights the importance of carefully examining the sequence composition of all viral stocks as well as understanding how passage history may alter a virus from its original form. Conclusions/Significance An effective ZIKV vaccine is needed to prevent infection-associated fetal abnormalities. Macaques whose immune responses were primed by infection with East African ZIKV were completely protected from detectable viremia when subsequently rechallenged with heterologous Asian ZIKV. Therefore, these data suggest that immunogen selection is unlikely to adversely affect the breadth of vaccine protection, i.e., any Asian ZIKV immunogen that protects against homologous challenge will likely confer protection against all other Asian ZIKV strains.


Immunogenetics | 2009

Characterization of 47 MHC class I sequences in Filipino cynomolgus macaques

Kevin J. Campbell; Ann M. Detmer; Julie A. Karl; Roger W. Wiseman; Alex J. Blasky; Austin L. Hughes; Benjamin N. Bimber; Shelby L. O’Connor; David H. O’Connor

Cynomolgus macaques (Macaca fascicularis) provide increasingly common models for infectious disease research. Several geographically distinct populations of these macaques from Southeast Asia and the Indian Ocean island of Mauritius are available for pathogenesis studies. Though host genetics may profoundly impact results of such studies, similarities and differences between populations are often overlooked. In this study we identified 47 full-length MHC class I nucleotide sequences in 16 cynomolgus macaques of Filipino origin. The majority of MHC class I sequences characterized (39 of 47) were unique to this regional population. However, we discovered eight sequences with perfect identity and six sequences with close similarity to previously defined MHC class I sequences from other macaque populations. We identified two ancestral MHC haplotypes that appear to be shared between Filipino and Mauritian cynomolgus macaques, notably a Mafa-B haplotype that has previously been shown to protect Mauritian cynomolgus macaques against challenge with a simian/human immunodeficiency virus, SHIV89.6P. We also identified a Filipino cynomolgus macaque MHC class I sequence for which the predicted protein sequence differs from Mamu-B*17 by a single amino acid. This is important because Mamu-B*17 is strongly associated with protection against simian immunodeficiency virus (SIV) challenge in Indian rhesus macaques. These findings have implications for the evolutionary history of Filipino cynomolgus macaques as well as for the use of this model in SIV/SHIV research protocols.


Immunogenetics | 2008

MHC class I characterization of Indonesian cynomolgus macaques

Chad J. Pendley; Ericka A. Becker; Julie A. Karl; Alex J. Blasky; Roger W. Wiseman; Austin L. Hughes; Shelby L. O’Connor; David H. O’Connor

Cynomolgus macaques (Macaca fascicularis) are quickly becoming a useful model for infectious disease and transplantation research. Even though cynomolgus macaques from different geographic regions are used for these studies, there has been limited characterization of full-length major histocompatibility complex (MHC) class I immunogenetics of distinct geographic populations. Here, we identified 48 MHC class I cDNA nucleotide sequences in eleven Indonesian cynomolgus macaques, including 41 novel Mafa-A and Mafa-B sequences. We found seven MHC class I sequences in Indonesian macaques that were identical to MHC class I sequences identified in Malaysian or Mauritian macaques. Sharing of nucleotide sequences between these geographically distinct populations is also consistent with the hypothesis that Indonesia was a source of the Mauritian macaque population. In addition, we found that the Indonesian cDNA sequence Mafa-B*7601 is identical throughout its peptide binding domain to Mamu-B*03, an allele that has been associated with control of Simian immunodeficiency virus (SIV) viremia in Indian rhesus macaques. Overall, a better understanding of the MHC class I alleles present in Indonesian cynomolgus macaques improves their value as a model for disease research, and it better defines the biogeography of cynomolgus macaques throughout Southeast Asia.


AIDS | 2017

Reactivation of simian immunodeficiency virus reservoirs in the brain of virally suppressed macaques.

Lucio Gama; Celina M. Abreu; Erin N. Shirk; Sally Price; Ming Li; Greg M. Laird; Kelly A. Metcalf Pate; Stephen W. Wietgrefe; Shelby L. O’Connor; Luiz Francisco Pianowski; Ashley T. Haase; Carine Van Lint; Robert F. Siliciano; Janice E. Clements

Objective: Resting CD4+ T cells have been recognized as the major cell reservoir of latent HIV-1 during antiretroviral therapy (ART). Using an simian immunodeficiency virus (SIV)/macaque model for AIDS and HIV-related neurocognitive disorders we assessed the contribution of the brain to viral latency and reactivation. Design: Pigtailed macaques were dual inoculated with SIVDeltaB670 and SIV17E-Fr and treated with an efficacious central nervous system-penetrant ART. After 500 days of viral suppression animals were treated with two cycles of latency reversing agents and increases in viral transcripts were examined. Methods: Longitudinal plasma and cerebrospinal fluid (CSF) viral loads were analyzed by quantitative and digital droplet PCR. After necropsy, viral transcripts in organs were analyzed by PCR, in-situ hybridization, and phylogenetic genotyping based on env V1 loop sequences. Markers for neuronal damage and CSF activation were measured by ELISA. Results: Increases in activation markers and plasma and CSF viral loads were observed in one animal treated with latency reversing agents, despite ongoing ART. SIV transcripts were identified in occipital cortex macrophages by in-situ hybridization and CD68+ staining. The most abundant SIV genotype in CSF was unique and expanded independent from viruses found in the periphery. Conclusion: The central nervous system harbors latent SIV genomes after long-term viral suppression by ART, indicating that the brain represents a potential viral reservoir and should be seriously considered during AIDS cure strategies.


PLOS Pathogens | 2017

Zika virus preferentially replicates in the female reproductive tract after vaginal inoculation of rhesus macaques

Timothy D. Carroll; Ming Lo; Marion C. Lanteri; Joseph Dutra; Katie R. Zarbock; Paola P. Silveira; Tracy Rourke; Zhong Min Ma; Linda Fritts; Shelby L. O’Connor; Michael P. Busch; Christopher J. Miller

Zika virus (ZIKV) is a mosquito-transmitted virus that can cause severe defects in an infected fetus. ZIKV is also transmitted by sexual contact, although the relative importance of sexual transmission is unclear. To better understand the role of sexual transmission in ZIKV pathogenesis, a nonhuman primate (NHP) model of vaginal transmission was developed. ZIKV was readily transmitted to mature cycling female rhesus macaque (RM) by vaginal inoculation with 104–106 plaque-forming units (PFU). However, there was variability in susceptibility between the individual RM with 1–>8 vaginal inoculations required to establish infection. After treatment with Depoprovera, a widely used contraceptive progestin, two RM that initially resisted 8 vaginal ZIKV inoculations became infected after one ZIKV inoculation. Thus, Depoprovera seemed to enhance susceptibility to vaginal ZIKV transmission. Unexpectedly, the kinetics of virus replication and dissemination after intravaginal ZIKV inoculation were markedly different from RM infected with ZIKV by subcutaneous (SQ) virus inoculation. Several groups have reported that after SQ ZIKV inoculation vRNA is rapidly detected in blood plasma with vRNA less common in urine and saliva and only rarely detected in female reproductive tract (FRT) secretions. In contrast, in vaginally inoculated RM, plasma vRNA is delayed for several days and ZIKV replication in, and vRNA shedding from, the FRT was found in all 6 animals. Further, after intravaginal transmission ZIKV RNA shedding from FRT secretions was detected before or simultaneously with plasma vRNA, and persisted for at least as long. Thus, ZIKV replication in the FRT was independent of, and often preceded virus replication in the tissues contributing to plasma vRNA. These results support the conclusion that ZIKV preferentially replicates in the FRT after vaginal transmission, but not after SQ transmission, and raise the possibility that there is enhanced fetal infection and pathology after vaginal ZIKV transmission compared to a mosquito transmitted ZIKV.


Immunogenetics | 2011

Characterization of full-length MHC class II sequences in Indonesian and Vietnamese cynomolgus macaques

Hannah M. Creager; Ericka A. Becker; Kelly K. Sandman; Julie A. Karl; Simon M. Lank; Benjamin N. Bimber; Roger W. Wiseman; Austin L. Hughes; Shelby L. O’Connor; David H. O’Connor

In recent years, the use of cynomolgus macaques in biomedical research has increased greatly. However, with the exception of the Mauritian population, knowledge of the MHC class II genetics of the species remains limited. Here, using cDNA cloning and Sanger sequencing, we identified 127 full-length MHC class II alleles in a group of 12 Indonesian and 12 Vietnamese cynomolgus macaques. Forty two of these were completely novel to cynomolgus macaques while 61 extended the sequence of previously identified alleles from partial to full length. This more than doubles the number of full-length cynomolgus macaque MHC class II alleles available in GenBank, significantly expanding the allele library for the species and laying the groundwork for future evolutionary and functional studies.


Nature Communications | 2017

Infection via mosquito bite alters Zika virus tissue tropism and replication kinetics in rhesus macaques

Dawn M. Dudley; Christina M. Newman; Joseph Lalli; Laurel M. Stewart; Michelle R. Koenig; Andrea M. Weiler; Matthew Semler; Gabrielle L. Barry; Katie R. Zarbock; Mariel S. Mohns; Meghan E. Breitbach; Nancy Schultz-Darken; Eric Peterson; Wendy Newton; Emma L. Mohr; Saverio Capuano; Jorge E. Osorio; Shelby L. O’Connor; David H. O’Connor; Thomas C. Friedrich; Matthew T. Aliota

Mouse and nonhuman primate models now serve as useful platforms to study Zika virus (ZIKV) pathogenesis, candidate therapies, and vaccines, but they rely on needle inoculation of virus: the effects of mosquito-borne infection on disease outcome have not been explored in these models. Here we show that infection via mosquito bite delays ZIKV replication to peak viral loads in rhesus macaques. Importantly, in mosquito-infected animals ZIKV tissue distribution was limited to hemolymphatic tissues, female reproductive tract tissues, kidney, and liver, potentially emulating key features of human ZIKV infections, most of which are characterized by mild or asymptomatic disease. Furthermore, deep sequencing analysis reveals that ZIKV populations in mosquito-infected monkeys show greater sequence heterogeneity and lower overall diversity than in needle-inoculated animals. This newly developed system will be valuable for studying ZIKV disease because it more closely mimics human infection by mosquito bite than needle-based inoculations.Vector saliva can affect infectivity and pathogenesis of vector-borne viruses, but this hasn’t been studied for Zika virus infection. Here, Dudley et al. show that mosquito-mediated Zika infection of macaques results in altered replication kinetics and greater sequence heterogeneity.

Collaboration


Dive into the Shelby L. O’Connor's collaboration.

Top Co-Authors

Avatar

David H. O’Connor

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Ericka A. Becker

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Thomas C. Friedrich

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Matthew T. Aliota

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Andrea M. Weiler

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Christina M. Newman

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Dawn M. Dudley

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Gabrielle L. Barry

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Mariel S. Mohns

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Meghan E. Breitbach

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge